본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

Title Page

Abstract

Contents

Chapter 1. Research background 19

1.1. Gene therapy 19

1.1.1. RNA interference 27

1.1.2. CRISPR/Cas9 32

1.2. Gene delivery systems 40

1.2.1. Gene delivery 40

1.2.2. Gene delivery systems 43

1.3. Functional peptides in gene delivery 54

1.3.1. Cell-penetrating peptides 55

1.3.2. Nuclear localization signals 68

1.3.3. Other peptides 76

1.3.4. Fusion peptide strategy 77

1.4. Self-assembled complex in gene delivery 78

1.4.1. Peptide-mediated gene delivery systems 78

1.4.2. Mechanisms of self-assembled complex in gene delivery 79

1.4.3. Influential factors in self-assembled complex 80

1.4.4. Properties and potentials of self-assembled complex 81

1.5. Research objectives 82

Chapter 2. Development of an efficient and safe small RNA delivery system using fusion peptide-mediated nanocomplex for gene silencing 85

2.1. Introduction 85

2.2. Experimental procedures 90

2.2.1. Materials 90

2.2.2. Preparation of small RNA/fusion peptide nanocomplexes 93

2.2.3. Characterization of small RNA/fusion peptide nanocomplexes 93

2.2.4. Intracellular delivery of nanocomplexes 96

2.2.5. Gene knockdown analysis 99

2.2.6. Endocytosis pathway study 102

2.2.7. Biocompatibility test of fusion peptide 102

2.2.8. In vivo fluorescence monitoring and imaging 103

2.2.9. Histological analysis 103

2.2.10. Statistical analysis 105

2.3. Results and discussion 105

2.3.1. Characterization of small RNA/fusion peptide nanocomplex 105

2.3.2. Evaluation of cellular uptake efficiency of nanocomplex 121

2.3.3. Gene silencing effect of nanocomplex 129

2.3.4. In vivo small RNA retention effect 134

2.3.5. Safety assessment of fusion peptide and nanocomplex 136

2.3.6. Mechanism study of nanocomplex 138

2.4. Conclusions 142

Chapter 3. Development of an efficient and safe large plasmid DNA delivery system using peptide-assisted lipoplex for gene editing 143

3.1. Introduction 143

3.2. Experimental procedures 147

3.2.1. Materials 147

3.2.2. Complexation of peptide-assisted lipoplex 148

3.2.3. Characterization of peptide-assisted lipoplex 149

3.2.4. Transfection of peptide-assisted lipoplex 151

3.2.5. Mechanism study of peptide-assisted lipoplex 155

3.2.6. pCas9-crRNA transfection 157

3.2.7. Histological analysis 163

3.2.8. Statistical analysis 163

3.3. Results and discussion 164

3.3.1. Characterization of peptide-assisted lipoplex 164

3.3.2. Evaluation of transfection efficiency and cellular activity of peptide-assisted lipoplex 170

3.3.3. Mechanism study of peptide-assisted lipoplex 187

3.3.4. Gene editing efficiency of peptide-assisted lipoplex 192

3.3.5. Therapeutic application of peptide-assisted lipoplex for cancer 202

3.4. Conclusions 211

Chapter 4. Overall conclusions 213

4.1. Conclusions 213

4.2. Future directions 215

1. Importance of controlling formulation in complex-based systems 215

2. Discussion on the overall manufacturing process of this system 216

3. Optimization in peptide design 216

References 218

국문초록 246

List of Tables

Table 1.1. FDA-approved gene therapy drugs 22

Table 1.2. FDA-approved short interfering RNA drugs 31

Table 1.3. Characteristics of different gene editing tools 39

Table 1.4. Representative biological intervention of CRISPR gene therapy in clinical trials 41

Table 1.5. Characteristics of viral vectors in gene delivery 47

Table 1.6. Advantages and disadvantages of viral and non-viral vectors as gene delivery systems 49

Table 1.7. Characteristics of non-viral chemical methods in gene delivery 52

Table 1.8. Common cell-penetrating peptides 65

Table 1.9. Classification and examples of nuclear localization signals 71

Table 2.1. List of small RNAs in this study 91

Table 2.2. List of peptides in this study 92

Table 2.3. Primer sequences for qRT-PCR 100

Table 3.1. List of crRNAs in this study 158

Table 3.2. PCR primer sequences for TIDE analysis 161

List of Figures

Figure 1.1. Gene therapy market size (2022 to 2032). The global gene therapy market was assessed at $6.5 billion in 2022 and is anticipated to surpass $38.76 billion by 2032, with an... 20

Figure 1.2. In vivo and ex vivo gene therapy approaches. In the context of gene-based drugs, in vivo application involves directly introducing the therapeutic gene into the patient's body, such... 24

Figure 1.3. Three major strategies in gene therapy. Gene augmentation entails the introduction of functional genes, gene silencing involves introducing genes that block defective genes, and gene... 26

Figure 1.4. Schematic representation of RNA interference mechanism. shRNA is encoded within a viral vector or plasmid and expressed, undergoing processing into siRNA by Dicer.... 28

Figure 1.5. CRISPR/Cas9-mediated gene editing by DNA repair mechanisms. In the error-prone NHEJ pathway, DSBs are repaired leading to random indel mutations at the junction site.... 37

Figure 1.6. Intracellular hurdles along the delivery of nucleic acids. Therapeutic nucleic acids must be specifically delivered to target cells and penetrate the cell membrane, possibly... 44

Figure 1.7. Proposed mechanisms of cellular internalization of cell-penetrating peptides. Direct translocation encompasses transient pore formation (toroidal and barrel stave models),... 58

Figure 1.8. Schematic model of nucleoplasmic transport of classical NLS-cargo protein. (a) Schematic model for classical NLS-cargo protein import. Importin β1 directs importin α to the... 73

Figure 1.9. Research objectives. In the first study, our primary aim was on the development of a small RNA delivery system using self-assembled nanocomplexes facilitated by a novel cell-... 83

Figure 2.1. Structure prediction of SPACE-R11 peptide. The α-helical secondary structures were visualized in red backbones. The image was obtained from PEP-FOLD4. 88

Figure 2.2. Schematic representation of Chapter 2. The objective of this study is to develop a small RNA delivery system using self-assembled nanocomplexes mediated by a novel cell-... 89

Figure 2.3. Confirmation of siRNA/peptide nanocomplex formation using gel retardation assay. The siRNA/peptide nanocomplexes were prepared with various N:P ratios (1:1, 5:1, 10:1, 20:1,... 106

Figure 2.4. Confirmation of shRNA/peptide nanocomplex formation using gel retardation assay. The shRNA/peptide nanocomplexes were prepared with various N:P ratios (1:1, 5:1, 10:1, 20:1,... 107

Figure 2.5. Size and zeta-potential of siRNA/peptide nanocomplex using DLS and ELS, respectively. The nanocomplexes with 200 nM siRNA were loaded in the cells and analyzed... 109

Figure 2.6. Size and zeta-potential of shRNA/SPACE-R11 nanocomplex at various N:P ratios using DLS and ELS, respectively. The nanocomplexes with 200 nM shRNA were loaded in the... 110

Figure 2.7. Size distribution by intensity according to N:P ratios of shRNA/SPACE-R11 nanocomplex. The nanocomplexes with 200 nM shRNA were loaded in the cells and analyzed... 111

Figure 2.8. Morphology and shRNA encapsulation efficiency of shRNA/SPACE-R11 nanocomplex. (A) Morphology of shRNA/SPACE-R11 nanocomplex. The nanocomplex (400 nM... 112

Figure 2.9. Nanocomplex-mediated stability of siRNAs in the presence of serum. In the left images, each siRNA/peptide nanocomplex was incubated in 10% FBS for 24, 48, 72, and 96 hours.... 115

Figure 2.10. Nanocomplex-mediated stability of shRNAs in the presence of serum. 25 pmol of shRNAs were mixed without or with each peptide at the 20:1 N:P ratio. The nanocomplexes were... 117

Figure 2.11. Size distribution of shRNA/SPACE-R11 nanocomplex in the presence of serum. The nanocomplexes incubated with 10% FBS for 4, 8, 12, and 16 hours were loaded in the cells and... 118

Figure 2.12. pH-dependent shRNA release profiles from nanocomplex. The nanocomplexes at the 1:1 and 20:1 N:P ratios were incubated in PBS (pH 7.4) and sodium acetate buffer (pH 5.5) at... 120

Figure 2.13. Observation of cellular uptake efficiency of Cy3-labeled siRNA/peptide nanocomplex in HeLa using a fluorescence microscope. The nanocomplexes with 200 nM Cy3-... 122

Figure 2.14. Cellular internalization of Cy3-labeled siRNA/FITC-labeled SPACE-R15 nanocomplex. (A) Single-molecule images of the siRNA/SPACE-R15 nanocomplex were... 123

Figure 2.15. Evaluation of cellular uptake of Cy3-labeled siRNA/peptide nanocomplexes using flow cytometry. The nanocomplexes with 200 nM siRNA were delivered into HDFn, HeLa, and... 125

Figure 2.16. Cellular uptake analysis of Cy3-labeled siRNA/SPACE-R11 nanocomplex in macrophages using a fluorescence microscope. (A) Observation of cellular uptake efficiency of... 127

Figure 2.17. Quantitative analysis of cellular uptake efficiency of Cy3-labeled siRNA/SPACE-R11 nanocomplex in macrophages and HEK293T using flow cytometry. (A) Cy3-labeled... 128

Figure 2.18. Target GAPDH mRNA knockdown analysis in HeLa and HaCaT by siRNA/peptide nanocomplexes using qRT-PCR. The nanocomplexes with GAPDH-siRNAs of final 200 nM... 130

Figure 2.19. Nanocomplex-mediated IL-23p19 mRNA knockdown analysis using qRT-PCR. RAW 264.7 cells were pre-treated with poly (I:C) of final 50 μg/mL for 6 hours. The... 132

Figure 2.20. In vivo gene silencing effect analysis using fluorescence imaging. pmCherry-N1 transfected HEK293T with 4 µg of free mCherry-siRNA (left) and siRNA/SPACE-R11... 133

Figure 2.21. In vivo fluorescence imaging of intratumorally administered siRNAs to tumor xenograft mice. 1 µg of free Cy3-labeled siRNA was administered intratumorally into the left... 135

Figure 2.22. Cell viability of fusion peptides. Relative LDH release of (A) SPACE-R7, (B) SPACE-R11, and (C) SPACE-R15-treated HDFn. Each fusion peptide was added to the cells for... 137

Figure 2.23. Histological analysis of siRNA/SPACE-R11 nanocomplex-injected skin tissues by hematoxylin and eosin staining. The siRNA/S-R11 nanocomplex was injected intradermally to... 139

Figure 2.24. Endocytosis pathway identification of Cy3-labeled siRNA/FITC-labeled SPACE-R15 nanocomplex using various chemical inhibitors. HeLa cells were pre-treated with each... 140

Figure 3.1. Structure prediction of SV40-R11 peptide. The α-helical secondary structures were visualized in red backbones. The image was obtained from PEP-FOLD4. 145

Figure 3.2. Schematic representation of Chapter 3. The objective of this study is to develop a large plasmid DNA delivery system using self-assembled lipoplexes mediated by a novel nuclear-... 146

Figure 3.3. Characterization of PAL. (A) Confirmation of PAL formation using gel retardation assay. SV40-R11 peptide was introduced to the lipoplex at each N:P ratio, followed by a 20-... 165

Figure 3.4. Size and zeta-potential of PAL-pCas9 using DLS and ELS, respectively. The PAL-pCas9 was diluted 10-fold with nuclease-free water and 1 mL of the diluted solution was loaded... 167

Figure 3.5. Stability test of pDNA in PAL-pCas9. 10% (v/v) FBS was added to each PAL-pCas9 and incubated at 37°C. Samples of 130 μL were collected at each time point. For pDNA... 169

Figure 3.6. Stability test of PAL-pCas9. (A) Overall size distribution of PAL-pCas9 over time in the presence of serum was measured using a zetasizer. (B) Average sizes of PAL-pCas9 at each... 171

Figure 3.7. Representative fluorescence cell counting analysis of PAL-pCas9. The PAL-pCas9 (0.8 μg of pCas9, 2 μg of Lipo2000, and specific N:P ratios of the SV40-R11 peptide) was added... 172

Figure 3.8. Average fluorescence cell counting analysis of PAL-pCas9. The PAL-pCas9 (0.8 μg of pCas9, 2 μg of Lipo2000, and specific N:P ratios of the SV40-R11 peptide) was added to the... 174

Figure 3.9. Cell recovery rate and cell viability after PAL-pCas9 treatment. (A) Relative cell recovery rate in HEK293T. The cell recovery rate was calculated by dividing the harvested cell... 176

Figure 3.10. Representative fluorescence cell counting analysis of PAL-pMasterE. The PAL-pMasterE (0.8 μg of pMasterE, 2 μg of Lipo2000, and 10:1 ratio of the SV40-R11 peptide) was... 178

Figure 3.11. Average fluorescence cell counting analysis of PAL-pMasterE. The PAL-pMasterE (0.8 μg of pMasterE, 2 μg of Lipo2000, and 10:1 N:P ratio of the SV40-R11 peptide) was added... 180

Figure 3.12. Cell recovery rate and cell viability after PAL-pMasterE treatment. (A) Relative cell recovery rate in HEK293T. The cell recovery rate was calculated by dividing the harvested cell... 181

Figure 3.13. mCherry intensity by PAL-pCas9 transfection in various cell lines. The PAL-pCas9 (1 μg of pCas9, 2.5 μg of Lipo2000, and 5:1 ratio of the SV40-R11 peptide) was added to the... 183

Figure 3.14. In vivo fluorescence analysis in mice injected with PAL-pCas9/HEK293T. The PAL-pCas9 (10 μg of pCas9, 25 μg of Lipo2000, and 5:1 ratio of the SV40-R11 peptide) was added to... 185

Figure 3.15. Mechanism study of PAL. (A) Endocytosis mechanism study using various endocytosis inhibitors. HEK293T cells were pre-treated with each inhibitor for 30 minutes. The... 188

Figure 3.16. Construction of pCas9-crRNA. (A) Linear vector map of the final pCas9-crRNAs. Each crRNA was synthesized as sense and antisense oligo strands. The cloning of crRNAs into... 193

Figure 3.17. Relative mean fluorescence intensity by PAL-crmCherry transfection in HEK293T. The PAL-crmCherry (0.8 μg of pCas9-crmCherry, 2 μg of Lipo2000, and 5:1 ratio of the SV40-... 194

Figure 3.18. TIDE analysis of PAL-crPLK1 #1. The PAL-crPLK1 #1 (0.8 μg of pCas9-crPLK1 #1, 2 μg of Lipo2000, and 5:1 ratio of the SV40-R11 peptide) was added to the HeLa cells for 48... 196

Figure 3.19. TIDE analysis of PAL-crPLK1 #2. The PAL-crPLK1 #2 (0.8 μg of pCas9-crPLK1 #2, 2 μg of Lipo2000, and 5:1 ratio of the SV40-R11 peptide) was added to the HeLa cells for 48... 197

Figure 3.20. TIDE analysis of PAL-crBCL2 #1. The PAL-crBCL2 #1 (0.8 μg of pCas9-crBCL2 #1, 2 μg of Lipo2000, and 5:1 ratio of the SV40-R11 peptide) was added to the HeLa cells for 48... 198

Figure 3.21. TIDE analysis of PAL-crBCL2 #2. The PAL-crBCL2 #2 (0.8 μg of pCas9-crBCL2 #2, 2 μg of Lipo2000, and 5:1 ratio of the SV40-R11 peptide) was added to the HeLa cells for 48... 199

Figure 3.22. Average indel efficiencies by PAL-crRNAs transfection in HeLa. 201

Figure 3.23. HeLa cell viability by transfection of PAL-crRNAs. The PAL-crPLK1 and PAL-crBCL2 (0.2 μg of pCas9-crRNAs, 0.5 μg of Lipo2000, and 5:1 ratio of the SV40-R11 peptide)... 203

Figure 3.24. Simultaneous delivery of Dox and PAL-crRNAs. Dox was added to the HeLa cells immediately after PAL-crRNAs treatment and incubated for 48 hours. (A) HeLa cell viability by... 206

Figure 3.25. Sequential delivery of Dox and PAL-crPLK1 #2. HeLa cells were pre-treated with Dox for 24 hours. The PAL-crPLK1 #2 was added to the cells for 48 hours. The CCK reagent was... 208

Figure 3.26. In vivo intratumoral delivery of PAL-crPLK1 #2 with Dox. (A) Overall procedures of in vivo experiments. HeLa cell mixtures were subcutaneously injected on both sides of the... 210

Figure 3.27. In vivo safety assessment. (A) Body weight changes of mice during in vivo experiments. (B) Histological analysis of PAL-injected skin tissues by H&E staining. The PAL... 212

Figure 4.1. Overall conclusions. This study aimed to develop a delivery system based on the functional fusion of peptides and self-assembled complexes, enhancing the efficiency, safety, and... 214

초록보기

 유전자 치료는 치료적 효능을 가진 DNA 또는 RNA와 같은 핵산을 외부에서 주입하여 난치병의 원인이 되는 유전적 결함을 분자 수준에서 근본적으로 치료할 수 있는 방법이다. 최근 FDA 승인을 획득한 짧은 간섭 RNA 치료제, COVID-19 팬데믹으로 인해 널리 알려진 mRNA 백신, 그리고 CRISPR/Cas9 유전자 편집 기술은 모두 노벨상을 수상했을 뿐 아니라 미래의 거대한 유전자 치료제 시장의 잠재력을 가지고 있어 이에 대한 연구가 활발하게 진행되고 있다.

유전자 침묵이나 유전자 편집과 같은 유전자 치료 전략을 실행하는 기능적 핵산은 목표 세포에 전달되어 효과를 나타내기 위해 여러 세포 내 장벽을 통과해야 한다. 세포 내로의 진입을 위해서는 세포막을 통과하고, 세포 내에서는 엔도좀/리소좀에서 세포기질로 방출되어야 하며, DNA의 경우 RNA와는 다르게 핵내로까지 전달되어야 한다. 그러나 핵산은 대형 분자로, 뉴클레오티드의 인산 골격과 인산다이에스터 결합 사이의 인산기로 인해 강한 음전하를 가진다. 이러한 특성은 핵산이 친수성을 갖게 하며 인지질 이중층 구조를 가진 세포막과의 상호작용을 방해한다. 또한 RNA의 경우 세포 내에서 분해에 취약하므로 안정성을 향상시킬 수 있는 기술이 필요하다. 이러한 도전을 극복하기 위해 기능적 핵산의 효율적이며 안전한 세포 내 전달을 지원하는 기술 개발을 필요로 하게 되었다.

본 연구에서는 이러한 유전자 전달 시스템의 구성 요소를 고려하여, 비바이러스성 벡터로 분류되는 펩타이드의 융합 전략과 자기조립 복합체를 이용한 제형 전략을 활용하여 유전자 침묵 및 유전자 편집을 위한 두 가지의 새로운 시스템을 중점적으로 연구하였다.

첫 번째 연구에서는 RNA 간섭 메커니즘을 활용하여 유전자 침묵을 유도하는 짧은 RNA (siRNA, shRNA)의 효율적이고 안전한 세포 내 전달을 목표로, 고유한 메커니즘을 통해 세포막을 효과적으로 투과할 수 있는 두 종류의 세포 투과성 펩타이드를 융합한 혁신적인 융합 펩타이드를 개발하였다. 기존 연구에서 단일 SPACE (skin permeating and cell entering) 펩타이드는 짧은 간섭 RNA와의 공유 결합을 중심으로 활용되었으며, 단독으로 사용된 양이온성 펩타이드는 핵산과의 복합체 형성 및 전달 효율에 한계가 있었다. 이에 따라 본 연구에서는 SPACE 펩타이드와 양이온성 올리고아르기닌 서열을 융합한 새로운 융합 펩타이드를 설계하여, 짧은 RNA와의 전기적 상호작용을 기반으로 한 자기조립 복합체를 생성하였다.

실험 결과, 짧은 RNA/융합 펩타이드 복합체는 전기적 상호작용 및 소수성 상호작용, 수소 결합 등의 비공유 결합을 활용하여 기존의 단독 양이온성 펩타이드보다 향상된 복합체 형성 효율을 보였다. 복합체는 혈청 환경에서 짧은 RNA의 안정성을 증가시키고 HeLa, HDFn, 그리고 RAW 264.7 등의 다양한 세포주에서 단독 펩타이드 복합체나 상용 리포좀보다 짧은 RNA의 전달 효율을 향상시켰다. HeLa와 RAW 264.7 세포에서 복합체는 표적 유전자의 mRNA 발현을 각각 61.3%와 66.2% 감소시켜, 리포펙타민과 유사한 효과를 나타냈다. 세포 내에서의 복합체 이입 메커니즘은 지질 중재 세포 내 흡수로 확인되었고, in vivo 실험에서는 국소적으로 주입된 복합체의 향상된 안정성 및 표적 유전자의 발현 저하를 확인하였다.

두 번째 연구에서는 CRISPR/Cas9 유전자 가위의 효율적인 발현을 통한 유전자 편집을 가능하게 하는 대형 플라스미드 DNA의 전달을 목표로, 핵 위치 신호 (peptide nuclear localization signal; NLS)와 세포 투과성 펩타이드를 융합한 융합 펩타이드와 리포플렉스를 조합한 복합체를 개발하였다. 상용 리포좀은 대형 플라스미드의 패키징에 한계를 보이며, DNA의 강한 음전하를 충분히 중화하지 못해 복합체의 안정성과 핵 내 투과 효율이 저하되었다. 또한 대형 플라스미드 전달에 주로 사용되는 전기천공법은 세포 손상을 유발하기 때문에 이에 대한 대체 전략의 필요성이 대두되었다.

따라서 본 연구에서는 SV40 NLS와 양이온성 올리고아르기닌 서열을 융합하여 리포플렉스에 조합한 펩타이드 보조 리포플렉스 (Peptide-assisted lipoplex; PAL)를 개발하였다. PAL은 플라스미드의 음전하 중화 능력을 향상시켰으며, 복합체 형성과 안정성 또한 강화하였다. 전기천공법에 비해 PAL은 9,283 bp 및 29,350 bp의 대형 플라스미드의 세포 전달 효율을 각각 2배 및 1.6배 증가시켰으며, 세포 생존율과 활성도를 29배 향상시켰다. 다양한 세포주에서 PAL은 기존 리포플렉스 대비 2배에서 4.4배 향상된 대형 플라스미드 전달 효율을 나타내었다. In vivo 마우스 모델에서는 3일 동안 대형 플라스미드 발현 세포를 유지시켰다. 특히, 과발현되는 암 관련 유전자를 표적으로 하는 CRISPR RNA가 삽입된 Cas9 플라스미드를 포함한 PAL의 전달은 최대 44.1%의 표적 유전자 변이 효율을 보였으며, 화학요법과 결합한 효과로 in vivo 마우스 종양 모델에서 종양 성장을 억제하였다. 실험 결과를 통해, 본 연구의 융합 펩타이드 기반 자기조립 복합체는 유전자 치료용 핵산 전달 시스템으로서 효율성과 안전성을 겸비한 새로운 접근법을 제시하였다.

종합적으로 본 연구를 통해 제시된 (1) 짧은 RNA/융합 펩타이드 나노복합체 기반 유전자 침묵 시스템 및 (2) 융합 펩타이드 보조 지질복합체를 활용한 대형 플라스미드 전달 시스템이 성공적으로 개발되었다. 이 두 시스템은 고효율과 안전성을 결합하여 짧은 RNA 및 대형 플라스미드의 전달을 통해 각각 유전자 침묵과 유전자 편집에 탁월한 성능을 보였다. 이러한 결과는 첨단 유전자 전달 플랫폼으로의 응용 가능성을 크게 높여주어 미래에 다양한 유전적 질환 치료에 적용할 수 있을 것으로 기대되었다.