표제지
목차
Ⅰ. 서론 9
1.1. 연구 배경 9
1.2. 연구 목적 11
1.3. 이론적 배경 12
1.3.1. 트랙터 변속기 12
1.3.2. 기어 강도 설계 13
1.3.3. 기어 손상 유형 16
1.3.4. 기어 강도 해석 19
Ⅱ. 재료 및 방법 26
2.1. 공시 트랙터 26
2.2. 포장시험 29
2.3. 기어 손상 분석 31
2.3.1. 부변속 A단 31
2.3.2. 부변속 B단 32
2.4. 기어 재질 변경 34
2.5. 시뮬레이션 해석 34
2.5.1. 시뮬레이션 모델링 34
2.5.2. 시뮬레이션 해석 조건 37
2.6. 차축 부하 다이나모 시험 38
2.6.1. 가속 수명 시험 38
2.6.2. 차축 다이나모 시험 장치 구성 40
2.6.3. 차축 다이나모 시험 조건 42
Ⅲ. 결과 및 고찰 45
3.1. 시뮬레이션 모델 개발 및 검증 45
3.2. 재질 변경에 따른 시뮬레이션 해석 결과 48
3.2.1. 부변속 A단 48
3.2.2. 부변속 B단 51
3.3. 차축 다이나모 시험 결과 55
3.3.1. 부변속 A단 55
3.3.2. 부변속 B단 56
3.4. 기어 수명 해석 결과 비교 57
Ⅳ. 결론 및 요약 59
LIST OF REFERENCES 61
ABSTRACT 66
Table 1. Specification of 86 kW agricultural tractor used in this study 27
Table 2. Specification of implements used in this study 29
Table 3. Chemical composition of alloy steel for machine structure use according to gear materials 34
Table 4. Specification of main shift gears for 86 kW class agricultural tractor used in this study 36
Table 5. Specification of range shift gears for 86 kW class agricultural tractor used in this study 37
Table 6. Fatigue damage exponent by heat treatment 40
Table 7. Conditions of axle dynamometer test used in this study 44
Table 8. Results of service life for range shift A driving gear of 86 kW class agricultural tractor transmission 49
Table 9. Results of service life for range shift A driven gear of 86 kW class agricultural tractor transmission 51
Table 10. Results of service life for range shift B driving gear of 86 kW class agricultural tractor transmission 53
Table 11. Results of service life for range shift B driven gear of 86 kW class agricultural tractor transmission 55
Table 12. Comparison of life for range shift gears between simulation analysis and axle dynamo test 58
Figure 1. Power flow of tractor for agricultural transmission 12
Figure 2. Gear wear 16
Figure 3. Gear plastic flow 17
Figure 4. Gear pitting 18
Figure 5. Gear breakage 19
Figure 6. A photo of 86 kW class agricultural tractor for field test used in this study 26
Figure 7. 3D model of agricultural tractor transmission used in this study 28
Figure 8. Power flow of agricultural tractor transmission used in this study 28
Figure 9. C type method for agricultural field operation used in this study 30
Figure 10. Results of field test for range shift A gear of 86 kW class agricultural tractor 31
Figure 11. View of gear plastic flow by stages 32
Figure 12. Results of field test for range shift B gear of 86 kW class agricultural tractor 33
Figure 13. Determination of normal chordal dimensions of tooth root critical section for ISO 6336 : Method B (external gears) 33
Figure 14. KISSsoft interface used in this study 35
Figure 15. Inverse power model 39
Figure 16. Configuration of the axle dynamometer system used in this study 41
Figure 17. A photo of the axle dynamometer test of 86 kW class agricultural tractor used in this study 42
Figure 18. Engine performance diagram of 86 kW class agricultural tractor 43
Figure 19. Simulation model of transmission for 86 kW class agricultural tractor transmission used in this study 45
Figure 20. Results of bending safety factor for transmission of 86 kW class agricultural tractor transmission 46
Figure 21. Results of contact safety factor for transmission of 86 kW class agricultural tractor transmission 47
Figure 22. Results of safety factor for range shift A driving gear of 86 kW class agricultural tractor transmission 48
Figure 23. Results of safety factor for range shift A driven gear of 86 kW class agricultural tractor transmission 50
Figure 24. Results of safety factor for range shift B driving gear of 86 kW class agricultural tractor transmission 52
Figure 25. Results of safety factor for range shift B driven gear of 86 kW class agricultural tractor transmission 54
Figure 26. Results of dynamometer test for range shift A gear of 86 kW class agricultural tractor transmission 56
Figure 27. Results of dynamometer test for range shift B gear of 86 kW class agricultural tractor transmission 57