표제지
목차
국문초록 9
제1장 서론 10
제2장 확률 모형 12
2.1. 확률 과정 정의 12
2.2. 신호 분석 모델링 13
2.2.1. 음원의 정의 13
2.2.2. 성도 필터 14
제3장 음원 이론과 신호 변환 16
3.1. 음원 필터 이론 16
3.2. 푸리에 변환 17
3.3. Z-변환 22
3.4. 웨이블릿 변환 23
제4장 푸리에 변환 계산 27
4.1. 시간 영역의 푸리에 계산 성질 27
4.1.1. 시간 적분 법칙 27
4.1.2. 시간 이동 법칙 27
4.2. 주파수 영역의 푸리에 계산 성질 28
4.2.1. 주파수 미분 법칙 28
4.2.2. 푸리에 변환쌍 법칙 28
제5장 음성 분석과 실증 연구 30
5.1. 음성 필터 30
5.2. 캡스트럼 피크 현저성 33
5.3. 실증 연구 36
제6장 결론 44
참고 문헌 47
영문초록 49
Table 5.1. Descriptive statistics of Data 36
Table 5.2. Comparison of results by smoothing measures 40
Table 5.3. Comparison of results by measures of feature extractions for all participants 41
Table 5.4. Comparison of results of sex group by measures of feature extractions, for Gender = Male, Female 42
Table 5.5. Comparison of results of age group by measures of feature extractions; for age : lower(age ≤ 30); middle(30 ≤ age < 70); upper(age ≥ 70). 43
Table 6.1. Descriptive statistics of CPP, Group = Normal, Depressed 44
Table 6.2. Results of evaluation metrics with regression 45
Table 6.3. Summary of results of classification evaluation metrics 46
Fig. 2.1. Schemstic diagram of human speech production 14
Fig. 3.1. LTI system of speech 16
Fig. 3.2. Spectrum of voice wave 18
Fig. 3.3. Power spectrum of voice wave 19
Fig. 3.4. Mel spectrogram of voice wave 20
Fig. 3.5. Mel Frequency Cepstral Coeffceint of voice wave 20
Fig. 3.6. Real cepstrum of voice wave (top) and complex cepstrum of voice wave (bottom) 21
Fig. 3.7. Morlet function (top) and Mexican Hat function (bottom) 23
Fig. 3.8. Morlet function on Continous Wavelet Transform 24
Fig. 3.9. Mexican Hat function on Continous Wavelet Transform 25
Fig. 3.10. Frequency pass filter of Discrete Wavelet Transform 25
Fig. 3.11. Discrete Wavelet Transform, level = 1, 2, 3 26
Fig. 5.1. Cepstral Peak Prominence for quefrency, quefrency = 0.05 s, 0.1 s, 0.2 s, 0.4 s (from the top left) 34
Fig. 5.2. Cepstral Peak Prominence for sampling rate, sampling rate = 8000 Hz, 16000 Hz, 22050 Hz, 44100 Hz (from the top left) 35
Fig. 5.3. Schematic diagram for analysis 36
Fig. 5.4. Cepstral Peak Prominence of linear regession 37
Fig. 5.5. CPP of linear regession on depressive patient (left) CPP of linear regession on normal (right) 37
Fig. 5.6. Real cepstrum smoothed with lowess 38
Fig. 5.7. CPP of Lowess on depressive patient (left) and CPP on Lowess of normal (right) 38
Fig. 5.8. Real cepstrum smoothed with wavelet 39
Fig. 5.9. CPP on wavelet of depressive patient (left) and CPP on wavelet of normal (right) 39
Fig. 6.1. Boxplot of CPP with group, Group = Nomal, Depressed 44