본문바로가기

자료 카테고리

전체 1
도서자료 0
학위논문 1
연속간행물·학술기사 0
멀티미디어 0
동영상 0
국회자료 0
특화자료 0

도서 앰블럼

전체 (0)
일반도서 (0)
E-BOOK (0)
고서 (0)
세미나자료 (0)
웹자료 (0)
전체 (1)
학위논문 (1)
전체 (0)
국내기사 (0)
국외기사 (0)
학술지·잡지 (0)
신문 (0)
전자저널 (0)
전체 (0)
오디오자료 (0)
전자매체 (0)
마이크로폼자료 (0)
지도/기타자료 (0)
전체 (0)
동영상자료 (0)
전체 (0)
외국법률번역DB (0)
국회회의록 (0)
국회의안정보 (0)
전체 (0)
표·그림DB (0)
지식공유 (0)

도서 앰블럼

전체 1
국내공공정책정보
국외공공정책정보
국회자료
전체 ()
정부기관 ()
지방자치단체 ()
공공기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
정부기관 ()
의회기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
국회의원정책자료 ()
입법기관자료 ()

검색결과

검색결과 (전체 1건)

검색결과제한

열기
논문명/저자명
에탄올 처리에 의한 황다랑어 (Thunnus albacares) 자숙액으로부터 Histidine-related Compounds의 분획 및 이의 수면 유도 효과 = Fractionation of histidine-related compounds from yellowfin tuna Thunnus albacares cooking drain using ethanol and its sleep-induced effect / 김현정 인기도
발행사항
진주 : 경상대학교 대학원, 2013.8
청구기호
TM 664.94 -13-5
형태사항
x, 105 p. ; 30 cm
자료실
전자자료
제어번호
KDMT1201349338
주기사항
학위논문(석사) -- 경상대학교 대학원, 해양식품공학과, 2013.8. 지도교수: 김진수
원문
미리보기

목차보기더보기

Abstract 17

제1장 Histidine-related compounds 분획소재로서 다랑어류 자숙액의 식품학적 특성 20

I. 서론 20

II. 재료 및 방법 28

1. 재료 28

2. 실험동물 28

3. 화학적 산소 요구량 (chemical oxygen demand, COD) 28

4. 일반성분, 염도, pH, Brix 및 단백질 농도 30

5. 중금속 및 무기질 30

6. Trichloroacetic acid (TCA) 가용성 질소, 유리아미노산 및 taste value 30

7. 총아미노산 31

8. 건강기능성 32

9. 통계처리 33

III. 결과 및 고찰 35

1. 화학적 산소 요구량 35

2. 중금속 35

3. 일반성분, pH, 염도 및 birx 36

4. 맛성분 38

5. 영양성분 42

6. HRC 및 taurine의 함량 47

7. 건강기능성 50

IV. 요약 58

제2장 황다랑어 자숙액으로부터 histidine-related compounds의 분획 및 건강 기능성에 대한 영향 59

I. 서론 59

II. 재료 및 방법 63

1. 재료 및 시약 63

2. 실험동물 63

3. 단백질 함량 및 농도 63

4. 유리아미노산 및 총아미노산 64

5. 무기질 64

6. 에탄올에 의한 HRC의 분획 65

7. SDS-polyacrylamide gel 전기영동 (SDS-PAGE) 65

8. 건강기능성 65

9. 통계처리 67

III. 결과 및 고찰 68

1. 에탄올 처리 농도에 따른 농축 황다랑어 자숙액으로부터 HRC의 분획 68

2. 농축 황다랑어 자숙액 유래 HRC 최적 fraction의 특성 83

IV. 요약 88

제3장 황다랑어(Thunnus albacares) 자숙액 유래 에탄올 획분의 수면 구조 분석 89

I. 서론 89

II. 재료 및 방법 92

1. 재료 92

2. 실험 동물 92

3. 수면 구조 분석 92

4. 통계처리 93

III. 결과 및 고찰 96

1. YF-E60의 수면증진효과 96

IV. 요약 107

V. 참고문헌 108

Table 1. Kinds of tuna processing by-products and researches for its efficient uses 25

Table 2. Operation condition of HPLC for measuring angiotensin-I converting enzyme (ACE) inhibitory activity 34

Table 3. Proximate composition, pH and salinity of cooking drains from skipjack tuna Katsuwonus pelamis and yellowfin tuna Thunnus albacares 37

Table 4. Free amino acid contents of cooking drains from skipjack tuna Katsuwonus pelamis and yellowfin tuna Thunnus albacares 40

Table 5. Taste values of cooking drains from skipjack tuna Katsuwonus pelamis and yellowfin tuna Thunnus albacares 41

Table 6. Total amino acid contents of cooking drains from skipjack tuna Katsuwonus pelamis and yellowfin tuna Thunnus albacares 43

Table 7. Mineral contents of cooking drains from skipjack tuna Katsuwonus pelamis and yellowfin tuna Thunnus albacares 47

Table 8. Researches for separation and purification of histidine-related compounds 62

Table 9. Free amino acids (FAAs) content (㎎/100 g protein) of fractions obtained from yellowfin tuna Thunnus albacares cooking drain by different ethanol concentration 74

Table 10. Taste values of optimal fraction obtained from yellowfin tuna Thunnus albacares cooking drain by different ethanol concentration 85

Table 11. Total amino acid content of optimal fraction obtained from yellowfin tuna Thunnus albacares cooking drain by different ethanol concentration 86

Table 12. Mineral content of optimal fraction obtained from yellowfin tuna Thunnus albacares cooking drain by different ethanol concentration 87

Fig. 1. Annual catch of tuna in Korea. 21

Fig. 2. Annual output of canned tuna in Korea. 24

Fig. 3. Chemical structure of histidine, anserine (β-alanyl-methyl-histidine) and carnosine (β-alanyl-L-histidine). 27

Fig. 4. Standard curve for determination of protein concentration by lowry method. 31

Fig. 5. Protocol of pentobarbital-induced sleep behaviour test in mice. 34

Fig. 6. Chemical oxygen demand (COD) contents of cooking drains from skipjack tuna Katsuwonus pelamis and yellowfin tuna Thunnus albacares. 37

Fig. 7. TCA soluble nitrogen contents of cooking drains from skipjack tuna Katsuwonus pelamis and yellowfin tuna Thunnus albacares. 38

Fig. 8. Histidine-related compounds (HRC) contents of cooking drains from skipjack tuna Katsuwonus pelamis and yellowfin tuna Thunnus albacares. 49

Fig. 9. Induction period (IP) and protection factor (PF) of cooking drains from skipjack tuna Katsuwonus pelamis and yellowfin tuna Thunnus albacares using the Rancimat test. 52

Fig. 10. Angiotensin I converting enzyme (ACE) inhibitory activity (IC50) of cooking drains from skipjack tuna Katsuwonus pelamis and yellowfin tuna Thunnus albacares. 52

Fig. 11. The renin-angiotensin and Kallikrein-kinin system. 53

Fig. 12. Effect of concentrated cooking drains from skipjack tuna Katsuwonus pelamis (SJ) and yellowfin tuna Thunnus albacares (YF) on sleep duration in mice administered a hypnotic dose (45 ㎎/㎏, i.p.) of... 56

Fig. 13. Effect of concentrated cooking drains from skipjack tuna Katsuwonus pelamis (SJ) and yellowfin tuna Thunnus albacares (YF) on sleep latency in mice administered a hypnotic dose (45 ㎎/㎏, i.p.) of... 57

Fig. 14. Protein content and yield of fractions obtained from yellowfin tuna Thunnus albacares cooking drain by different ethanol concentration. 69

Fig. 15. SDS-PAGE pattern of fractions obtained from yellowfin tuna Thunnus albacares cooking drain by different ethanol concentration. 72

Fig. 16. Total HRC content (g/100 g protein) and purification (fold) of fractions obtained from yellowfin tuna Thunnus albacares cooking drain by different ethanol concentration. 75

Fig. 17. Histidine, anserine and carnosine content (g/100 g protein) and purification (fold) of fractions obtained from yellowfin tuna Thunnus albacares cooking drain by different ethanol concentration. 76

Fig. 18. Induction period (hr) and protection factor (PF) of fractions obtained from yellowfin tuna Thunnus albacares cooking drain by different ethanol concentration. 80

Fig. 19. Angiotensin I converting enzyme (ACE) inhibitory activity (IC50) of fractions obtained from yellowfin tuna Thunnus albacares cooking drain by different ethanol concentration.(이미지참조) 80

Fig. 20. Effect of fractions (obtained from yellowfin tuna Thunnus albacares cooking drain by different ethanol concentration) on sleep duration in mice administered a hypnotic dose (45 ㎎/㎏, i.p.) of pentobarbital. 81

Fig. 21. Effect of fractions (obtained from yellowfin tuna Thunnus albacares cooking drain by different ethanol concentration) on sleep latency in mice administered a hypnotic dose (45 ㎎/㎏, i.p.) of pentobarbital. 82

Fig. 22. Effect of sleep deprivation 91

Fig. 23. Experimental protocol for EEG (electroencephalogram) and EMG (electromyogram) recording in mice. 94

Fig. 24. Cycle of sleep. 97

Fig. 25. Effects of YF-E60 on sleep latency to NREM sleep. 99

Fig. 26. Total time spent in NREM sleep, REM sleep, and wakefulness for 4 hr after the administration of YF-E60. 101

Fig. 27. Time courses of NREM sleep, REM sleep, and wakefulness after the administration of YF-E60. 102

Fig. 28. Effects of YF-E60 and DZP on changes in the mean duration of each sleep stage. 104

Fig. 29. Classification of sleep waves. 105

Fig. 30. EEG power density during NREM sleep for YF-E60 and DZP. 106

Photo. 1. Photograph of skipjack tuna Katsuwonus pelamis and yellowfin tuna Thunnus albacares. 22

Photo. 2. Photograph of cooking drains from skipjack tuna Katsuwonus pelamis and yellowfin tuna Thunnus albacares. 29

Photo. 3. Photograph of animals (A) and animal's cage (B). 29

Photo. 4. Photograph of fractions obtained from yellowfin tuna Thunnus albacares cooking drain by different ethanol concentration. 70

Photo. 5. Gelation of fractions obtained from yellowfin tuna Thunnus albacares cooking drain by different ethanol concentration. 70

Photo. 6. Positions of EEG (electroencephalogram) and EMG (electromyogram) in rat skull (A) and the recording chamber (B). 94

Photo. 7. Photography of EEG recording instruments. 95

권호기사보기

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 기사목차
연속간행물 팝업 열기 연속간행물 팝업 열기