본문바로가기

자료 카테고리

전체 1
도서자료 0
학위논문 1
연속간행물·학술기사 0
멀티미디어 0
동영상 0
국회자료 0
특화자료 0

도서 앰블럼

전체 (0)
일반도서 (0)
E-BOOK (0)
고서 (0)
세미나자료 (0)
웹자료 (0)
전체 (1)
학위논문 (1)
전체 (0)
국내기사 (0)
국외기사 (0)
학술지·잡지 (0)
신문 (0)
전자저널 (0)
전체 (0)
오디오자료 (0)
전자매체 (0)
마이크로폼자료 (0)
지도/기타자료 (0)
전체 (0)
동영상자료 (0)
전체 (0)
외국법률번역DB (0)
국회회의록 (0)
국회의안정보 (0)
전체 (0)
표·그림DB (0)
지식공유 (0)

도서 앰블럼

전체 1
국내공공정책정보
국외공공정책정보
국회자료
전체 ()
정부기관 ()
지방자치단체 ()
공공기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
정부기관 ()
의회기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
국회의원정책자료 ()
입법기관자료 ()

검색결과

검색결과 (전체 1건)

검색결과제한

열기
논문명/저자명
산업단지 대기 중 다이옥신류 프로파일 특성과 다환방향족탄화수소 발생원 정의 및 CMB모델 적용평가 / 심영지 인기도
발행사항
부산 : 부경대학교 대학원, 2010.8
청구기호
TM 628.5 -10-48
형태사항
viii, 107 p. ; 26 cm
자료실
전자자료
제어번호
KDMT1201061914
주기사항
학위논문(석사) -- 부경대학교 대학원, 지구환경공학, 2010.8. 지도교수: 옥곤
원문
미리보기

목차보기더보기

표제지

목차

Abstract 10

1. 서론 12

1.1. 연구배경 및 목적 12

1.2. 이론적 고찰 15

1.2.1. Polychlorinated dibenzo-para-dioxins and polychlorinated dibenzofurans(PCDD/DFs) 15

1.2.2. Dioxin like Polychlorinated biphenyls(DL-PCBs) 20

1.2.3. Polycyclic aromatic hydrocarbons(PAHs) 23

1.3. CMB 모델 27

1.3.1. CMB 모델의 개요 27

1.3.2. CMB 모델의 국내·외 연구사례 31

2. 실험방법 33

2.1. 시료 채취 및 전처리 방법 33

2.1.1. 대기시료 33

2.1.2. PAHs 발생원 시료 40

2.2. 분석조건 및 방법 42

2.2.1. PCDD/DFs 42

2.2.2. DL-PCBs 45

2.2.3. PAHs 46

3. 결과 및 고찰 48

3.1. 산업단지별 다이옥신류 프로파일 특성 48

3.2. 산업단지별 PAHs 농도수준 및 프로파일 특성 56

3.3. PAHs 발생원 정의 및 기여도 평가 64

3.3.1. PAHs의 주요 발생원 분류 및 배출특성 66

3.3.2. PCA를 통한 PAHs 발생원 정의 83

3.3.3. 특성분석의 발생원 정의 85

3.3.4. CMB모델을 이용한 발생원 기여도 할당 91

4. 요약 및 향후 연구방안 97

참고문헌 101

감사의 글 116

Table 1. Isomeric distribution of PCDD/DFs(Modified from Rappe, 1984) 17

Table 2. Physical and chemical properties of PCDD/DFs 18

Table 3. Summary of physical and chemical properties of PCBs isomer groups(modified from Mackay et al.,1992b) 22

Table 4. The physical and chemical properties of PAHs 24

Table 5. Environmental source of PAHs 26

Table 6. Summary of PAHs source contribution studies using a CMB and other receptor moedels in foreign/Domestic countries 32

Table 7. Sampling and meteorological conditions during the period of PAHs measurements in 2008 35

Table 8. Instrumental analysis conditions of HRGC/HRMS for PCDD/DFs 43

Table 9. Quantitation mass and ratio of molecular in group of PCDD/DFs 44

Table 10. Instrumental conditions of PCBs by GC/MS 45

Table 11. Instrumental conditions of PAHs by GC/MS 46

Table 12. PAHs GC/MS Selected ions 47

Table 13. Concentration of PAHs in Ambient air of each industrial complex 58

Table 14. Non-mandatory ambient air quality standards for the B(a)P(Khaiwal et al., 2008) 60

Table 15. Correlation coefficients for PCDDs, PCDFs, PAHs, DL-PCBs from Ambient air of inudstrial area 63

Table 16. Classification of selected emission sources 65

Table 17. Result of principal component analysis about PAHs sources 81

Table 18. Summary statistics for compiled diagnostic ratios by using 6 indicators 87

Table 19. Weight percentage of each compounds according to the sources for CMB 92

Table 20. The result of average source contribution by CMB model in ambient air of the industrial area 95

Fig. 1. Molecular structures of toxic 2,3,7,8-substituted PCDD/DFs. 19

Fig. 2. Molecular structures and numbering systems of PCBs. 21

Fig. 3. Sampling location of this study. 34

Fig. 4. Multi-layer silica gel column chromatography(upper) and activated alumina column chromatography(lower) for PCDD/DFs analysis. 38

Fig. 5. Experimental procedures for the determination of PAHs. 39

Fig. 6. Profile pattern of total of 2,3,7,8 substituted PCDD/DFs in Ambient air of Industrial complex.[원문불량] 50

Fig. 7. Profile pattern of total of PCDD/DFs homologue in Ambient air of industrial complex. 51

Fig. 8. Homologue profile pattern of PCDD/DFs in each seasons. 53

Fig. 9. Profile of DL-PCBs. 55

Fig. 10. Profile of PAHs 59

Fig. 11. Contribution rate of Carc.PAHs(upper) and benzene ring PAHs(lower). 61

Fig. 12. Principal component analysis about PCDD/DFs, DL-PCBS, PAHs from Ambient air of industrial area. 63

Fig. 13. Concentration of ΣPAHs(upper) and Profile pattern(lower) in each waste incinerator. 68

Fig. 14. Contribution rate of each ring number 16 PAHs(upper) and PAHcarc(lower) in waste incinerators. 69

Fig. 15. Concentration of ΣPAHs(upper) and Profile pattern(lower) in each iron/steel and nonferrous industry. 71

Fig. 16. Contribution rate of each ring number 16 PAHs(upper) and PAHcarc(lower) in Iron/steel and nonferrous industry. 72

Fig. 17. Concentration of ΣPAHs(upper) and Profile pattern(lower) in each iron/steel and nonferrous industry. 74

Fig. 18. Contribution of each ring number 16 PAHs(upper) and PAHcarc(lower) in Chemical industry. 75

Fig. 19. Profiles of PAHs compounds in each sources. 79

Fig. 20. Principal component analysis about PAHs sources. 82

Fig. 21. Principal component analysis about PAHs sources and Industrial complex ambient air. 84

Fig. 22. “Diagnostic ratios" for a variety of source categories for 6 indicators. 88

Fig. 23. Correlation between calculated and observed concentration of PAHs in ambient air of the Industrial complex. 94

Fig. 24. Source contributions(%) for PAHs in ambient air of industrial area, Korea. 96

초록보기 더보기

PCDD/DFs released to the atmosphere are mainly emitted from anthropogenic activities, including waste incineration, power/energy generation, other high-temperature sources and chemical-industrial sources. Furthermore, polycyclic aromatic hydrocarbons (PAHs) are emitted to the atmosphere from variety sources. Therefore, it is important to evaluate quantitatively the relationship between receptor and sources for effective control about pollutants.

In this study, ambient air samples are collected from 7 highly industrialized area(A∼G) in Korea. Major PAHs sources such as waste incinerator, iron/steel and nonferrous industry, chemical industry were examined and the reference data from other sources such as open burning, crematory, road dust, vehicle exhaust, boiler and briquette was quoted from previous study in Korea.

The first purpose of this study is to evaluate the characteristic of PCDD/DFs, DL-PCBs and PAHs on ambient air of industrial area.

Second purpose is to examine the characteristic of PAHs profile pattern on PAHs sources. PAHs sources were identified with PCA and diagnostic ratio analysis about the ambient air in industrial area and PAHs air emission sources.

Finally, A chemical mass balance model, CMB8.2 was used to apportion the major sources of PAHs detected in ambient air of industrial area. The coefficient of determination R², χ² and percent mass were average 0.99, 1.42 and 83.25%, respectively. Therefore these results of CMB model were confirmed statistically valuable. Modeling results verified that chemical industry and iron/steel and nonferrous industry are major sources of PAHs in this study.

keywords : PCDD/DFs , PAHs, Industrial area, Source identification, PCA, CMB model

권호기사보기

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 기사목차
연속간행물 팝업 열기 연속간행물 팝업 열기