본문바로가기

자료 카테고리

전체 1
도서자료 0
학위논문 1
연속간행물·학술기사 0
멀티미디어 0
동영상 0
국회자료 0
특화자료 0

도서 앰블럼

전체 (0)
일반도서 (0)
E-BOOK (0)
고서 (0)
세미나자료 (0)
웹자료 (0)
전체 (1)
학위논문 (1)
전체 (0)
국내기사 (0)
국외기사 (0)
학술지·잡지 (0)
신문 (0)
전자저널 (0)
전체 (0)
오디오자료 (0)
전자매체 (0)
마이크로폼자료 (0)
지도/기타자료 (0)
전체 (0)
동영상자료 (0)
전체 (0)
외국법률번역DB (0)
국회회의록 (0)
국회의안정보 (0)
전체 (0)
표·그림DB (0)
지식공유 (0)

도서 앰블럼

전체 1
국내공공정책정보
국외공공정책정보
국회자료
전체 ()
정부기관 ()
지방자치단체 ()
공공기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
정부기관 ()
의회기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
국회의원정책자료 ()
입법기관자료 ()

검색결과

검색결과 (전체 1건)

검색결과제한

열기
논문명/저자명
Hydrothermal 공정에 의한 Ni(OH)₂ 나노결정의 제조와 결정구조 제어 = Fabrication and control of crystal structure of Ni(OH)₂ nanocrystals by hydrothermal process / 구민영 인기도
발행사항
대전 : 한국과학기술원, 2007.8
청구기호
TM 620.11 ㄱ412h
형태사항
x, 81 p. ; 26 cm
자료실
전자자료
제어번호
KDMT1200760480
주기사항
학위논문(석사) -- 한국과학기술원, 신소재공학, 2007.8
원문
미리보기

목차보기더보기

title page

Abstract

Contents

1. Introduction 15

2. Literature survey 17

2.1. Ni(OH)₂ 17

2.1.1. Crystal structure of Ni(OH)₂ 17

2.1.2. Ni-MH batteries 19

2.1.2.1. Improvement of Ni-MH cell energy density 19

2.2. Hydrothermal process for fabrication of nanocrystals 24

2.2.1. Hydrothermal process[34-38] 24

2.2.2. Method of hydrothermal process 25

2.2.2.1. Temperature-difference method 25

2.2.2.2. Temperature-reduction technique 25

2.2.2.3. Metastable-phase technique 25

2.2.3. Fabrication of Ni(OH)₂by using hydrothermal process 26

2.3. Mechanism for crystal structure, size and shape of nanocrystals 28

2.3.1. Crystal structure control 28

2.3.2. Shape control of nanocrystals[46] 31

2.3.2.1. Thermodynamic theory 31

2.3.2.2. Selective-adsorption model 31

2.3.2.3. Effective-monomer model 32

2.3.2.4. Hofmeister series[47] 33

2.3.3. Size control of nanocrystals[75] 36

3. Experimental procedures 39

3.1. Fabrication process of Ni(OH)₂nanocrystals 39

3.1.1. Chemicals 39

3.1.2. Reaction apparatus 39

3.1.3. Heating and cooling profile 42

3.2. Characterization of Ni(OH)₂nanocrystals 44

3.2.1. Microstructure of Ni(OH)₂nanocrystals 44

3.2.2. X-ray diffraction 44

3.2.3. Fourier transformation infrared spectroscopy 44

3.2.4. BET analysis 44

3.2.5. TGA/DSC analysis 45

4. Results and discussions 46

4.1. Fabrication of Ni(OH)₂nanocrystals 46

4.1.1. Microstructures of mixture of crystal and amorphous Ni(OH)₂ 46

4.1.2. Fabrication of Ni(OH)₂nanocrystals by HTHP reaction 46

4.2. Effect of process parameters on size of Ni(OH)₂nanocrystals 55

4.2.1. Effect of reaction temperature on Ni(OH)₂nanocrystals 55

4.2.2. Effect of reaction time on Ni(OH)₂nanocrystals 55

4.3. Effect of process parameters on shape of Ni(OH)₂nanocrystals 61

4.3.1. Effect of reaction temperature and time on Ni(OH)₂nanocrystals 61

4.3.2. Effect of pH control on Ni(OH)₂nanocrystals 64

4.3.3. Effect of anion on Ni(OH)₂nanocrystals 67

4.3.4. Effect of surfactant on Ni(OH)₂nanocrystals 71

4.4. Effect of anion on crystal structure of Ni(OH)₂nanocrystals 73

5. Conclusions 86

Future plans 88

국문요약 89

References 91

감사의 글(Acknowledgement) 96

Table 2.1. List of various precursors, precipitators, condition and results in the hydrothermal process. 27

Fig. 2.1. Crystal structure of Ni(OH)₂ 18

Fig. 2.2. Comparison of energy density of the secondary batteries. 21

Fig. 2.3. Scheme of charging reaction of Ni-HM battery. 22

Fig. 2.4. Weight percentage distribution of battery components. 23

Fig. 2.5. Relation between hexagonal and monoclinic structure of CuFeO₂ 29

Fig. 2.6. Schematic representation of intercalation of DIK via anionic exchange. 30

Fig. 2.7. TEM micrograph of Nanocrystals obtained by adding 10­³M of various anions. The chemical reaction is ended after 3h. 35

Fig. 2.8. (a) Reverse micelles, (b) control of nanocrystal size with w, that is, control of the size of water-in-oil droplets. 38

Fig. 2.9. Silver nanocrystals made in reverse micellar solution. (a) Decahedron. (b) Icosahedron. (c) Cubo-octahedron. 38

Fig. 3.1. Fabrication process of Ni(OH)₂ Nanocrystals. 40

Fig. 3.2. Apparatus for fabrication of Ni(OH)₂Nanocrystals by hydrothermal process (HTHP reactor), 1.Reaction Vessel, 2.Thermocouple, 3.Bent, 4.Gas controller, 5.Outlet for gas, 6. Stirring controller. 41

Fig. 3.3. Typical time-temperate profile for fabrication of Ni(OH)₂nanocrystals by hydrothermal process. 43

Fig. 4.1. Mixture of Amorphous and crystal Ni(OH)₂. 48

Fig. 4.2. (a) Ni(OH)₂Nanocrystals (b) Amorphous Ni(OH)₂. 49

Fig. 4.3. XRD pattern of previous fabricated Ni(OH)₂. 50

Fig. 4.4. (a) DSC curve of Ni(OH)₂. 51

Fig. 4.4. (b) TGA curve of Ni(OH)₂ (c) DTG curve of Ni(OH)₂. 52

Fig. 4.5. Ni(OH)₂ with perfect crystallization. 53

Fig. 4.6. XRD pattern of Ni(OH)₂ with perfect crystallization. 54

Fig. 4.7. TEM micrographs of Ni(OH)₂ nanocrystals fabricate by hydrothermal process. (a) 150°C and 0 min (b) 200°C and 0 min. 56

Fig. 4.8. TEM micrographs of Ni(OH)₂ nanocrystals fabricate by hydrothermal process. (a) 150°C and 0 min (b) 200°C and 0 min. 57

Fig. 4.9. TEM micrographs of Ni(OH)₂ nanocrystals fabricate by hydrothermal process at 200°C (a) not HTHP reaction (b)for 1 h (c )for 10 h (d)for 24 h. 58

Fig. 4.10. Graph showing relationship between reaction time and diameter of Ni(OH)₂ nanodisks. The bar is standard deviation. 59

Fig. 4.11. TEM micrographs of Ni(OH)₂ nanocrystals fabricated by hydrothermal process at 150°C (a) not HTHP reaction (b) for 0 min (c) for 60 min (d) for 600 min. 60

Fig. 4.12. TEM micrographs of Ni(OH)₂ nanocrystals fabricated by hydrothermal process at 150°C (a) for 0 min (b) for 60 min (c) for 600 min. 62

Fig. 4.13. TEM micrographs of Ni(OH)₂ nanocrystals fabricated by hydrothermal process at 200°C (a) for 60 min (b) for 600 min. 63

Fig. 4.14. TEM micrographs of Ni(OH)₂ nanocrystals fabricated by hydrothermal process at 200°C for 600 min. (a) pH 12 (b) pH 10 (c) pH 8. 65

Fig. 4.15. Relative percentage of Ni(OH)₂ nanocrystals differing by their shapes. 66

Fig. 4.16. TEM micrograph of Ni(OH)₂ nanocrystals fabricated by hydrothermal process at 200°C for 60 min and pH 8. (a) 0.1M HCI solution (b) 0.1M HNO₃solution. 68

Fig. 4.17. TEM micrograph of growth direction of Ni(OH)₂ nanocrystals. (b) HRTEM of dotted line in (a) : radial direction. 69

Fig. 4.18. TEM micrograph of growth direction of Ni(OH)₂ nanocrystals.(b) HRTEM of doted line in (a) : Axis direction. 70

Fig. 4.19. TEM micrograph of Ni(OH)₂ nanocrystals fabricated by hydrothermal process at 200°C for 60 min using different surfactant (a) SDS (b) AOT. 72

Fig. 4.20. TEM micrograph of Ni(OH)₂ nanocrystals fabricated by hydrothermal process at 200°C for 60 min and pH 8 (1M H₂SO₄solution). 74

Fig. 4.21. XRD pattern comparison of Ni(OH)₂ fabricated by hydrothermal process at 200°C for 60 min and pH 8, (HCI and H₂S0₄used pH control acid type). 75

Fig. 4.22. Scheme of changing from hexagonal structure to monoclinic structure (a) hexagonal structure (b) monoclinic structure. 76

Fig. 4.23. FT-IR spectra of Ni(OH)₂and Ni(SO₄)o.₃(OH)₁.₄ . 78

Fig. 4.24. HR-TEM micrograph of growth direction of Ni(SO₄)o.₃(OH)₁.₄. 79

Fig. 4.25. (a) DSC curve of Ni(SO₄)o.₃(OH)₁.₄after heat treatment. 81

Fig. 4.25. (b) TGA curve of Ni(SO₄)o.₃(OH)₁.₄after heat treatment. (c) DTG curve of Ni(SO₄)o.₃(OH)₁.₄after heat treatment. 82

Fig. 4.26. FT-IR spectra of Ni(SO₄)o.₃(OH)₁.₄after heat treatment. 83

Fig. 4.27. XRD pattern comparison of Ni(SO₄)o.₃(OH)₁.₄after heat treatment. 84

Fig. 4.28. TEM microgaph of Ni(SO₄)o.₃(OH)₁.₄after heat treatment (a) after heat treatment at 250°C for 2h. (b) after heat treatment at 500°C for 2h. 85

권호기사보기

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 기사목차
연속간행물 팝업 열기 연속간행물 팝업 열기