본문바로가기

자료 카테고리

전체 1
도서자료 0
학위논문 1
연속간행물·학술기사 0
멀티미디어 0
동영상 0
국회자료 0
특화자료 0

도서 앰블럼

전체 (0)
일반도서 (0)
E-BOOK (0)
고서 (0)
세미나자료 (0)
웹자료 (0)
전체 (1)
학위논문 (1)
전체 (0)
국내기사 (0)
국외기사 (0)
학술지·잡지 (0)
신문 (0)
전자저널 (0)
전체 (0)
오디오자료 (0)
전자매체 (0)
마이크로폼자료 (0)
지도/기타자료 (0)
전체 (0)
동영상자료 (0)
전체 (0)
외국법률번역DB (0)
국회회의록 (0)
국회의안정보 (0)
전체 (0)
표·그림DB (0)
지식공유 (0)

도서 앰블럼

전체 1
국내공공정책정보
국외공공정책정보
국회자료
전체 ()
정부기관 ()
지방자치단체 ()
공공기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
정부기관 ()
의회기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
국회의원정책자료 ()
입법기관자료 ()

검색결과

검색결과 (전체 1건)

검색결과제한

열기
논문명/저자명
Implementation of wavelength tunability, wavelength conversion and optical flip-flop in injection locked fabry-perot laser diodes = 외부 공진기를 내장한 파장 가변 레이저 다이오드와 외부 주입 잠김 현상을 이용한 파장 변환기와 전광 플립-플롭 구현 / 정용덕 인기도
발행사항
대전 : 한국정보통신대학교 대학원, 2006.8
청구기호
TD 621.3827 ㅈ275i
형태사항
viii, 103 p. ; 26 cm
자료실
전자자료
제어번호
KDMT1200686771
주기사항
학위논문(박사) -- 한국정보통신대학교 대학원, 공학, 2006.8
원문
미리보기

목차보기더보기

Title page

Abstract

Contents

I. INTRODUCTION 13

1.1. Introduction 13

1.2. Motivation 15

1.3. Applications of FP-LD on this thesis 16

1.3.1. Tunable lasers 16

1.3.2. Novel wavelength conversion 20

1.3.3. All-optical flip-flop memory 24

1.4. Thesis outline 26

II. THEORETICAL BACKGROUND OF FP-LD WITH EXTERNAL CAVITY, INJECTION LOCKING, AND BISTABILITY 27

2.1. Introduction 27

2.2. External cavity laser 29

2.3. Injection locking mechanism 33

2.4. Bistability of injection locked laser diode 38

2.5. Chapter summary 44

III. TUNABLE SINGLE-MODE FP-LD USING A BUILT-IN EXTERNAL CAVITY 45

3.1. Introduction 45

3.2. Single-mode condition of external cavity laser 46

3.3. Experimental demonstration 47

3.4. Investigation on wavelength tunability and reliability 51

3.5. Relative intensity noise measurement 56

3.6. Direct modulation characteristics 59

3.7. Chapter summary 64

IV. ALL-OPTICAL WAVELENGTH CONVERSION USING AN INJECTION LOCKED SINGLE-MODE FP-LD 65

4.1. Introduction 65

4.2. Operation principle of wavelength conversion using a single-mode FP-LD 66

4.3. Experimental results of wavelength conversion at 2.5 Gbit/s NRZ data 69

4.4. Chapter summary 72

V. ALL-OPTICAL FLIP-FLOP USING THE COMBINATION OF INJECTION LOCKED MULTI-MODE FP-LD AND SINGLE-MODE FP-LD 73

5.1. Introduction 73

5.2. Optical bistability 74

5.3. Operation principle of all-optical flip-flop 76

5.4. Experimental results of all-optical flip-flop with external set and reset trigger signal 82

5.5. Chapter summary 87

VI. CONCLUSION 88

국문요약 91

References 95

Acknowledgement 107

Table 2.1. Physical parameters for the calculation of rate equations 40

Fig. 1.1. Examples of monolithically integrated tunable lasers : (a) selectable DFB array, (b) sampled grating DBR laser. 18

Fig. 1.2. Examples of external cavity lasers using (a) diffraction grating with MEMS mirror and (b) temperature tuned polymer waveguide Bragg grating. 19

Fig. 1.3. A bidirectional optical-electronic-optical converter consisting of a photodiode(PD), a trans-impedance amplifier(TIA), clock recovery and synthesis units(CRSU) 22

Fig. 2.1. Schematic diagram of the external cavity configuration. r1 and r0 are the reflectivity of laser diode facet and external mirror, respectively. n is the refractive index 30

Fig. 2.2. Schematic description of mode matching condition when LL is not close to an integer multiple of Lext. 32

Fig. 2.3. Phasor diagram showing how the slave laser field β changes due to injection of field β₁from the master laser. 34

Fig. 2.4. Changes in gain g versus Δω for locked operation. Laser operation corresponds to the smallest value of g and is indicated by the solid line. 37

Fig. 2.5. The conceptual model of a semiconductor laser diode with external injection 39

Fig. 2.6. Numerically computed locked output versus frequency detuning level for various injected powers. 41

Fig. 2.7. Numerically computed locked output versus normalized external injection power for various frequency detuning levels with P = 1.07 Pth. 42

Fig. 2.8. Numerically computed locked output versus normalized bias current driving laser for various injected powers. 43

Fig. 3.1. (a) Cross-section of a co-axially packaged FP-LD that includes a builtin external cavity. (b) The appearance of the packaged tunable LD with attached TEC module. 49

Fig. 3.2. A design drawing of the thermo-electric cooler module. (unit in mm) 49

Fig. 3.3. Reflectance spectrum of the proposed external cavity laser. Dense modes depict the external cavity modes and the envelope comes from laser cavity modes. 50

Fig. 3.4. Optical spectra of (a) conventional FP-LD and (b) proposed FP-LD. 50

Fig. 3.5. Optical spectra of the proposed FP-LD in single-mode oscillation at various operating temperatures. 53

Fig. 3.6. Wavelength and SMSR as a function of temperature. The minimum SMSR over all wavelengths is 27 dB. 54

Fig. 3.7. TEC temperature versus environmental chamber temperature. The TEC maintained its setting temperature, 24.97 C with only 0.15 C variances. 55

Fig. 3.8. RIN measurement setup. Photocurrent is divided into AC part and DC part by using a bias tee, and AC part is amplified and measured by RF spectrum analyzer. 58

Fig. 3.9. RIN as a function of the wavelength. RIN for each wavelength is defined by the maximum value in the spectral range from 3 MHz to 2.5 GHz. 58

Fig. 3.10. BER curves at 155 Mbit/s with various external cavity lengths and various extinction ratios. 61

Fig. 3.11. BER curves at 622 Mbit/s with various wavelengths. 62

Fig. 3.12. BER curves at 1.25 Gbit/s with various wavelengths. 63

Fig. 4.1. Operating scheme of the proposed wavelength converter. Single-mode FP-LD serves as both the probe beam (l1) source and the intermediate material that transfer 67

Fig. 4.2. Red shift of the laser cavity modes with pump beam injection. The amount of red shift is 0.16 nm 68

Fig. 4.3. Measured output optical spectra of the proposed FP-LD; (a) freerunning spectrum and (b) injection locked spectrum with external injection at λpump 68

Fig. 4.4. Experimental setup of the proposed wavelength converter. 70

Fig. 4.5. Oscilloscope traces of (a) input data at λpump and (b) the converted output at λprobe₁ 71

Fig. 4.6. BER curves and eye diagrams of conversion to λprobe₁, conversion to λprobe₂, and back-to-back measurement. 71

Fig. 5.1. The bistable characteristics of the injection locked FP-LD. The FP-LD is fully injection locked when the injection power is -6 dBm, and the locking state is released when 75

Fig. 5.2. (a) Schematic structure of the proposed all-optical flip-flop, (b) operation of the all-optical flip-flop, and (c) description of each step on the hysteresis curve. 77

Fig. 5.3. The set process from step 1 to step 3. The sustaining beam is always injected into the slave FP-LD. 79

Fig. 5.4. The optical spectra of the slave FP-LD for each step. (a), (b), and (c) are respectively, for step 1, step 2, and step 3. λd is the wavelength of the sustaining beam and λs 79

Fig. 5.5. The set process from step 4 to step 5. 81

Fig. 5.6. The optical spectra of the master FP-LD for each step. (a) and (b) are respectively, for step 4 and step 5. λr is the wavelength of the reset pulse. 81

Fig. 5.7. Experimental Setup. TL : tunable laser, PC : polarization controller, MOD : Mach-Zehnder modulator, OBF : optical band-pass filter, OC : optical circulator, PPG : pulse 83

Fig. 5.8. Oscilloscope traces of (a) set power, (b) reset power, (c) sustaining beam power, and (d) the flip-flop output. 85

Fig. 5.9. Oscilloscope traces of the flip-flop output. (a) and (a ) are the initial trace. (b), (c), (d), (e) and (f) are traces when the set signal is advanced sequentially from (a) 86

Fig. 5.10. (a) Rising edge and (b) falling edge of the flip-flop output. 86

권호기사보기

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 기사목차
연속간행물 팝업 열기 연속간행물 팝업 열기