본문바로가기

자료 카테고리

전체 1
도서자료 0
학위논문 1
연속간행물·학술기사 0
멀티미디어 0
동영상 0
국회자료 0
특화자료 0

도서 앰블럼

전체 (0)
일반도서 (0)
E-BOOK (0)
고서 (0)
세미나자료 (0)
웹자료 (0)
전체 (1)
학위논문 (1)
전체 (0)
국내기사 (0)
국외기사 (0)
학술지·잡지 (0)
신문 (0)
전자저널 (0)
전체 (0)
오디오자료 (0)
전자매체 (0)
마이크로폼자료 (0)
지도/기타자료 (0)
전체 (0)
동영상자료 (0)
전체 (0)
외국법률번역DB (0)
국회회의록 (0)
국회의안정보 (0)
전체 (0)
표·그림DB (0)
지식공유 (0)

도서 앰블럼

전체 1
국내공공정책정보
국외공공정책정보
국회자료
전체 ()
정부기관 ()
지방자치단체 ()
공공기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
정부기관 ()
의회기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
국회의원정책자료 ()
입법기관자료 ()

검색결과

검색결과 (전체 1건)

검색결과제한

열기
논문명/저자명
The Structural and functional studies of bacterial quality control system = 박테리아 quality control system의 구조와 기능 연구 / 김동영 인기도
발행사항
서울 : 성균관대학교 대학원, 2006.8
청구기호
TD 611.0181663 ㄱ594s
형태사항
vii, 131 p. ; 26 cm
자료실
전자자료
제어번호
KDMT1200685003
주기사항
학위논문(박사) -- 성균관대학교 대학원, 분자세포생물학, 2006.8
원문

목차보기더보기

title page

Contents

Introduction 11

PART I. The structure and proteolytic mechanism of ClpX and ClpP 13

1.0. ABSTRACT 13

SUBPART I. Crystal structure of ClpX molecular chaperone from Helicobacter pylori 15

1.1.1. Introduction 15

1.1.2. Experimental procedures 18

1.1.2.1. Protein Preparation and Crystallization 18

1.1.2.2. The Size Measurement of Hp ClpX-ASD 18

1.1.2.3. Data Collection, Structure Determination, and Refinement 19

1.1.2.4. Modeling of Hexameric ClpX-ASD 20

1.1.3. Results and discussion 21

1.1.3.1. Size Determination of Hp ClpX-ASD in Solution 21

1.1.3.2. Overall Structure of Hp ClpX-ASD 23

1.1.3.3. Structural Comparison with Homologous Proteins 25

1.1.3.4. Hexameric Assembly of Hp ClpX-ASD 30

1.1.3.5. Nucleotide Binding Site 32

1.1.4. Conclusion 37

1.1.5. REFERENCES 38

SUBPART II. Activation mechanism of ClpP protease 43

1.2.1. Introduction 43

1.2.2. Materials and methods 46

1.2.2.1. HpClpP expression and preparation 46

1.2.2.2. Crystallization and data collection 46

1.2.2.3. Structure determination and refinement 47

1.2.2.4. Isothermal titration calorimetry(내용없음) 48

1.2.3. Results 49

1.2.3.1. Structure determination of HpClpP 49

1.2.3.2. Overall structure of HpClpP 49

1.2.3.3. Crystal structure of HpClpP in complex with peptides 53

1.2.3.4. ClpP recognizes substrate via backbone interaction 54

1.2.3.5. Substrate binding pockets of HpClpP 58

1.2.3.6. Substrate binding hastens rearrangement of active sites 61

1.2.4. Discussion 65

1.2.4.1. Non-specific hydrophobic interaction between ClpX and ClpP 65

1.2.4.2. The sequential digestion and release of a substrate by ClpP 67

1.2.4.3. The structural implication of the communication between ClpX and ClpP 71

1.2.5. REFERENCES 72

PART II. The mechanism for the temperature induced functional conversion of bacterial HtrA 77

2.1. ABSTRACT 77

2.2. Introduction 78

2.3. Experimental procedures 81

2.3.1. Plasmid construction and site directed mutagenesis for EPR spectroscopy 81

2.3.2. Protein expression, purification, and spin labeling 81

2.3.3. EPR data collection 82

2.3.4. Assay of peptidase activity 82

2.3.5. Circular dichroism 83

2.3.6. The size measurement of HtrA mutants 83

2.3.7. Acrylamide quenching 83

2.4. Results 85

2.4.1. The formation of quality control chamber by PDZ2 85

2.4.2. Lineshape analysis of room temperature EPR spectra 87

2.4.3. Distance measurement 91

2.4.4. Temperature-dependent flexibility change depending on position 92

2.4.5. Local environmental change paralleling with function conversion 98

2.4.6. Structure of HL at high temperature(이미지참조) 101

2.5. Discussion 104

2.6. REFERENCES 107

PART III. The structural and functional study of E.coli RseB, regulator of oE signaling.(이미지참조) 110

3.1. Introduction 110

3.2. Materials and methods 113

3.2.1. Cloning, expression and protein purification of RseB 113

3.2.2. Crystallization 113

3.2.3. Structure determination and refinement 114

3.2.4. Dimerization by cysteine mutation of RseB 115

3.2.5. His-tag pull-down assay 115

3.2.6. Size exclusion chromatography 116

3.2.7. Circular dichroism 116

3.3. Results and discussion 118

3.3.1. Structure of RseB monomer 118

3.3.2. RseB dimer of two conformations 123

3.3.3. RseB interacts with binding motif of RseA strongly via charge interaction 127

3.3.4. RseB binding motif of RseA has helical conformation 128

3.3.5. The Closed RseB does not interact with RseA 133

3.4. REFERENCES 134

[요약] 139

Table 1a-I. Data collection and refinement statistics of Hp ClpX-ASD 24

Table 1b-I. Data collection and refinement statistics 48

Table 1b-II. The distances of catalytic triads of HpClpP and HpClpP-NVLGFTQ complex 63

Table 1b-III. The distances of catalytic triads of HpClpP and HpClpP-AAAA complex 64

Table 2-I. Oligomerization of T.mar HtrA mutants 86

Table 2-II. Ksv values of acrylamide quenching(이미지참조) 97

Table 3-I. Data collection and refinement statistics of E.coli RseB 117

PART I. 8

Fig 1a-1. Size determination of Hp ClpX-ASD. 22

Fig 1a-2. The structures of Hp ClpX-ASD, E.coli HslU and E. coli ClpA D2. 27

Fig 1a-3. The hexamer model of Hp ClpX-ASD and E.coli ClpP heptamer. 34

Fig 1a-4. Stereo view of nucleotide binding region of Hp ClpX. 36

Fig 1b-1. The structure of H.pylori ClpP. 51

Fig 1b-2. Diverse electron densities of hepta-peptide (NVLGFTQ) bound to HpClpP 55

Fig 1b-3. The substrate recognition of HpClpP 56

Fig 1b-4. The substrate binding pocket of HpClpP. 59

Fig 1b-5. Activation of HpClpP by the binding of substrates. 60

Fig 1b-6. Additional electron density of binding cleft in the structure of DFP-modified HpClpP/peptide NVLGFTQ complex. 66

Fig 1b-7. The sequential digestion of substrate by ClpP. 69

Fig 1b-8. The model of ClpXP communication. 70

PART II. 8

Fig 2-1. A. Proteolytic activities of native and reduced α-lactalbumin. The molar ratio of T.mar HtrA to native α-lactalbumin (or reduced form) was adjusted to 1:150. B. Mutation sites for EPR spectroscopy in full length HtrA.... 88

Fig 2-2. Distance measurement of double labeled mutants. 90

Fig 2-3. Not overall structural perturbation but position-dependent temperature sensitivity of flexibility responsible for the HL opening.(이미지참조) 94

Fig 2-4. Fluorescence quenching depending on position at various temperatures. 95

Fig 2-5. Local environmental change near active site paralleling with functional conversion. 99

Fig 2-6/6. The structure of the removed HL and a proposed model for HtrA function.(이미지참조) 102

PART III. 9

Fig 3-1. Structure of the E.coli RseB monomer. 120

Fig 3-2. Interaction between large and small domain in closed (A) and open (B) RseB. 122

Fig 3-3. Butterfly-like structure of RseB dimer. 125

Fig 3-4. The mapping of RseA domain for RseB binding. 129

Fig 3-5. RseA·B binding via charge interaction. 130

Fig 3-6. Circular dichroism spectra of RseA169-186(이미지참조). 132

권호기사보기

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 기사목차
연속간행물 팝업 열기 연속간행물 팝업 열기