본문바로가기

자료 카테고리

전체 1
도서자료 0
학위논문 1
연속간행물·학술기사 0
멀티미디어 0
동영상 0
국회자료 0
특화자료 0

도서 앰블럼

전체 (0)
일반도서 (0)
E-BOOK (0)
고서 (0)
세미나자료 (0)
웹자료 (0)
전체 (1)
학위논문 (1)
전체 (0)
국내기사 (0)
국외기사 (0)
학술지·잡지 (0)
신문 (0)
전자저널 (0)
전체 (0)
오디오자료 (0)
전자매체 (0)
마이크로폼자료 (0)
지도/기타자료 (0)
전체 (0)
동영상자료 (0)
전체 (0)
외국법률번역DB (0)
국회회의록 (0)
국회의안정보 (0)
전체 (0)
표·그림DB (0)
지식공유 (0)

도서 앰블럼

전체 1
국내공공정책정보
국외공공정책정보
국회자료
전체 ()
정부기관 ()
지방자치단체 ()
공공기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
정부기관 ()
의회기관 ()
싱크탱크 ()
국제기구 ()
전체 ()
국회의원정책자료 ()
입법기관자료 ()

검색결과

검색결과 (전체 1건)

검색결과제한

열기
논문명/저자명
필로티를 갖는 철근콘크리트 전단벽식 건물의 내진성능 [전자자료] / 김민수 인기도
발행사항
인천 : 인천대학교 대학원, 2004.2
청구기호
전자형태로만 열람 가능함
형태사항
1 온라인자료 : PDF
자료실
전자자료
제어번호
KDMT1200434165
주기사항
학위논문(박사) -- 인천대학교 대학원, ?, 2004.2
원문
미리보기

목차보기더보기

표제지

國文抄錄

목차

Symbols 19

1. 서 언 22

1.1 연구 배경 및 목적 22

1.2 연구 범위 및 방법 24

2. 내진성능에 관한 연구동향 26

2.1 성능에 기초한 내진공학 27

2.1.1 차세대 내진설계의 정의 27

2.1.2 차세대 내진설계의 내용 27

2.2 국내·외의 내진성능평가 29

2.2.1 미국의 내진성능평가 29

2.2.2 일본의 내진성능평가 31

2.2.3 한국의 내진성능평가 35

2.3 건축물의 내진성능 36

2.3.1 건축물의 성능수준 37

2.3.2 내진성능평가 39

3. 필로티에 따른 내진영향 65

3.1 건물의 형상에 따른 지진응답 65

3.2 필로티에 따른 연성요구도의 변화 67

3.3 필로티에 따른 내진성능 69

3.3.1 층간변위를 통한 연약층 검토 70

3.3.2 성능점 및 변형한계 76

3.4 연성요구도 81

3.4.1 설계연성수준에 관한 구조적 분류 82

3.4.2 연성요구도의 평가 83

4. 내진성능의 평가 93

4.1 건물개요 93

4.1.1 구조개요 93

4.1.2 콘크리트강도 및 벽체두께 97

4.1.3 적용하중 97

4.1.4 해석방법 100

4.2 평가방법 및 기준 101

4.2.1 1차 평가방법 및 기준 101

4.2.2 2차 평가방법 및 기준 103

4.2.3 정밀 내진성능 평가방법 및 기준 108

4.3 1차 내진성능평가 111

4.3.1 항목별평가 111

4.3.2 층 가중치 및 항목별 가중치 113

4.3.3 평가 결과 114

4.4 2차 내진성능평가 116

4.4.1 밑면전단력의 산정 116

4.4.2 탄성해석법에 의한 밑면전단력 116

4.4.3 2차 내진성능평가 118

4.4.4 층 가중치 및 항목별 가중치 119

4.4.5 평가결과 120

4.5 정밀 내진성능평가 122

4.5.1 능력곡선과 요구곡선 123

4.5.2 성능점 131

5. 내진성능평가의 고찰 133

5.1 1차내진성능평가 133

5.1.1 강도 133

5.1.2 강성 133

5.1.3 형상 136

5.1.4 상세 및 기타, 열화 137

5.2 2차내진성능평가 140

5.3 열화 146

5.4 정밀내진성능평가 147

5.4.1 설계거동의 한계 검토 147

5.4.2 부재의 적합성 검토 153

5.5 내진성능지수 163

6. 결 언 169

참고문헌 172

부 록 177

ABSTRACT 191

감사의 글 195

Table 2.1 Acceptance criteria for seismic assessment 35

Table 2.2 Seismic hazard levels 38

Table 2.3 Structural behavior types 61

Table 2.4 Values for damping modification factor 62

Table 2.5 Minimum allowable SRA and SRV values 63

Table 2.6 Deformation limits according to performance levels 64

Table 3.1 Check of soft story according to story drift at first story(Type-A) 71

Table 3.2 Check of soft story according to story drift at first story(Type-B) 71

Table 3.3 Check of soft story according to story drift at first story(Type-C) 72

Table 3.4 Check of soft story according to story drift at first story(Type-D) 72

Table 3.5 Performance point and deformation limit results according to piloti types 76

Table 3.6 Ductility demand with piloti variation at the first story 87

Table 4.1 Material properties and wall thickness 97

Table 4.2 Calculation of floor load 97

Table 4.3 Calculation of seismic load for X, Y direction 99

Table 4.4 1st-Evaluation index for acceptance criteria 101

Table 4.5 Criteria of performance level 108

Table 4.6 Criteria of performance objective 109

Table 4.7 Deformation limits for performance levels 109

Table 4.8 Numerical acceptance criteria for plastic hinge rotations in reinforced concrete walls and wall segments controlled by flexure(ATC-40, 1996) 110

Table 4.9 Numerical acceptance criteria for tangential drift ratio for reinforced concrete walls and wall segments controlled by shear(ATC-40, 1996) 110

Table 4.10 Check of story shear stress for 35-story buildings with piloti 111

Table 4.11 Check of weak story for 35-story buildings with piloti 112

Table 4.12 Check of story mass change for 35-story buildings with piloti 112

Table 4.13 1st-Evaluation item to weighting factor 113

Table 4.14 1st-Seismic performance evaluation 114

Table 4.15 Arrangement of base shear force due to the elastic analysis 116

Table 4.16 Base shear force and scale-up factor for 35-story with piloti 117

Table 4.17 Check of shear wall elements stress for 35-story building with piloti 118

Table 4.18 Check of story drift for 35-story building with piloti 119

Table 4.19 2nd-Evaluation item to weighting factor 119

Table 4.20 2nd-Seismic performance evaluation 120

Table 4.21 Effective damping factors for buildings without piloti 123

Table 4.22 Effective damping factors for buildings with piloti 124

Table 4.23 Performance points for buildings without piloti 131

Table 4.24 Performance points for buildings with piloti 132

Table 5.1 1st - Seismic performance evaluation results of buildings without iloti 137

Table 5.2 1st - Seismic performance evaluation results of buildings with piloti 138

Table 5.3 2nd - Seismic performance evaluation results of buildings without piloti 140

Table 5.4 2nd - Seismic performance evaluation results of buildings with piloti 141

Table 5.5 Acceptance criteria for deterioration 146

Table 5.6 Deformation limit results of buildings without piloti 148

Table 5.7 Deformation limit results of buildings with piloti 149

Table 5.8 Plastic hinge rotation of buildings without piloti 160

Table 5.9 Plastic hinge rotation of buildings with piloti 161

Table 5.10 Seismic performance indices with regression analysis 167

Fig. 2.1 Basic concept of performance-based seismic design 28

Fig. 2.2 Codes on performance-based seismic design in America 30

Fig. 2.3 Codes on performance-based seismic design in Japan 32

Fig. 2.4 Seismic assessment procedures 33

Fig. 2.5 Seismic performance evaluation procedures for buildings 36

Fig. 2.6 Building performance levels 38

Fig. 2.7 Performance objectives with buildings performance levels 39

Fig. 2.8 1st-Seismic performance evaluation procedures 40

Fig. 2.9 Vertical irregularities for geometry 45

Fig. 2.10 Horizontal irregularities for geometry 46

Fig. 2.11 Shear reinforcement of side column 47

Fig. 2.12 Shear reinforcement of column 48

Fig. 2.13 Shear reinforcement of beam 48

Fig. 2.14 Opening retrofit of RC shear wall structure 49

Fig. 2.15 2nd-Seismic performance evaluation procedures 51

Fig. 2.16 Typical pushover curve 54

Fig. 2.17 Force-displacement curve of nonlinear static analysis 56

Fig. 2.18 Capacity spectrum conversion 56

Fig. 2.19 Demand response spectrum to ADRS conversion 57

Fig. 2.20 Bi-linear representation 58

Fig. 2.21 Derivation of damping for energy dissipation 59

Fig. 2.22 Derivation of energy dissipated by damping 60

Fig. 2.23 Damping modification factor( k ) for structural behavior type A, B, C 62

Fig. 2.24 Inelastic demand spectrum 63

Fig. 2.25 Inelastic demand spectrum and performance point 63

Fig. 2.26 Seismic evaluation of structure with performance levels 64

Fig. 3.1 Variation of story stiffness with height 66

Fig. 3.2 Interaction frames and wall 68

Fig. 3.3 Piloti pattern of reinforced concrete shear wall buildings 70

Fig. 3.4 Comparison of story drift ratio of buildings according to piltoi types 73

Fig. 3.5 Comparison of story drift ratio of buildings according to piloti types-continued 74

Fig. 3.5 Comparison of story drift ratio of buildings

according to story-continued 75

Fig. 3.6 Inelastic demand spectrum and performance point according to piloti types-10story 77

Fig. 3.7 Inelastic demand spectrum and performance point according to piloti types-15story 77

Fig. 3.8 Inelastic demand spectrum and performance point according to piloti types-20story 78

Fig. 3.9 Inelastic demand spectrum and performance point according to piloti types-25story 78

Fig. 3.10 Inelastic demand spectrum and performance point according to piloti types-30story 79

Fig. 3.11 Inelastic demand spectrum and performance point according to piloti types-35story 79

Fig. 3.12 Sway mechanism in frames of ductility 81

Fig. 3.13 Relationship between strength and ductility(Priestly, 1992) 83

Fig. 3.14 Moment, curvatures, and deflection relationships for a prismatic reinforced concrete 84

Fig. 3.15 Moment -curvature relationships 85

Fig. 3.16 System ductility demand according to piloti types 88

Fig. 3.17 Story ductility demand according to piloti types at first story 88

Fig. 3.18 Column drift ratio according to piloti types at first story 89

Fig. 3.19 Relationship between ductility and force reduction factor 91

Fig. 3.20 Inelastic force-displacement relationship 92

Fig. 4.1 1Floor plan 94

Fig. 4.2 Transfer floor plan 94

Fig. 4.3 Typical floor plan 94

Fig. 4.4 Elevation 95

Fig. 4.5 Section 96

Fig. 4.6 Flow chart for pushover analysis 100

Fig. 4.7 Design spectrum for elastic analysis(KS 2000 Code) 117

Fig. 4.8 Inelastic demand spectrum and performance point - 10 story (X-DIR : LS Level) 125

Fig. 4.9 Inelastic demand spectrum and performance point - 10 story (Y-DIR : LS Level) 125

Fig. 4.10 Inelastic demand spectrum and performance point - 15 story (X-DIR : LS Level) 126

Fig. 4.11 Inelastic demand spectrum and performance point - 15 story (Y-DIR : LS Level) 126

Fig. 4.12 Inelastic demand spectrum and performance point - 20 story (X-DIR : LS Level) 127

Fig. 4.13 Inelastic demand spectrum and performance point - 20 story (Y-DIR : LS Level) 127

Fig. 4.14 Inelastic demand spectrum and performance point - 25 story (X-DIR : LS Level) 128

Fig. 4.15 Inelastic demand spectrum and performance point - 25 story (Y-DIR : LS Level) 128

Fig. 4.16 Inelastic demand spectrum and performance point - 30 story (X-DIR : LS Level) 129

Fig. 4.17 Inelastic demand spectrum and performance point - 30 story (Y-DIR : LS Level) 129

Fig. 4.18 Inelastic demand spectrum and performance point - 35 story (X-DIR : LS Level) 130

Fig. 4.19 Inelastic demand spectrum and performance point - 35 story (Y-DIR : LS Level) 130

Fig. 5.1 Static displacement of building without piloti according to buildings story 134

Fig. 5.2 Static displacement of building with piloti

according to buildings story 134

Fig. 5.4 Comparison of performance indices of buildings with piloti 118

Fig. 5.3 Comparison of static X-DIR displacement of buildings with or without piloti-continued 136

Fig. 5.4 Comparison of performance indices of buildings with piloti 139

Fig. 5.5 Story drift ratio of buildings with piloti 142

Fig. 5.6 Comparison of X-DIR story drift ratio of buildings with piloti-continued 142

Fig. 5.6 Comparison of X-DIR story drift ratio of buildings with piloti-continued 143

Fig. 5.7 Comparison of 2nd performance indices tendency of buildings with iloti 144

Fig. 5.8 Performance indices tendency of 1st and 2nd seismic evaluation of buildings without piloti 144

Fig. 5.9 Performance indices tendency of 1st and 2nd seismic evaluation of buildings with piloti 145

Fig. 5.10 Inelastic demand spectrums and performance point of buildings without piloti according to stories (X-DIR) 150

Fig. 5.11 Inelastic demand spectrums and performance point of buildings without piloti according to stories (Y-DIR) 150

Fig. 5.12 Inelastic demand spectrums and performance point of buildings with piloti according to stories (X-DIR) 151

Fig. 5.13 Inelastic demand spectrums and performance point of buildings with piloti according to stories (Y-DIR) 151

Fig. 5.14 Interstory drift of buildings without piloti(X-DIR) 152

Fig. 5.15 Interstory drift of buildings with piloti(X-DIR) 152

Fig. 5.16 Typical load-deformation acceptance criteria 153

Fig. 5.17 Plastic hinge rotation 154

Fig. 5.18 Interstory drift versus tangential interstory drift 154

Fig. 5.19 Numbering for shear wall element 155

Fig. 5.20 Plastic hinges of 20 story building 156

Fig. 5.21 Plastic hinges of 25 story building 157

Fig. 5.22 Plastic hinges of 30 story building 158

Fig. 5.23 Plastic hinges of 35 story building 159

Fig. 5.24 Flow chart for the RSP identification procedure 163

Fig. 5.25 Performance indices of shear wall buildings by 1st evaluation 164

Fig. 5.26 Correlated performance index between analysis results and egression 168

권호기사보기

권호기사 목록 테이블로 기사명, 저자명, 페이지, 원문, 기사목차 순으로 되어있습니다.
기사명 저자명 페이지 원문 기사목차
연속간행물 팝업 열기 연속간행물 팝업 열기