권호기사보기
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
대표형(전거형, Authority) | 생물정보 | 이형(異形, Variant) | 소속 | 직위 | 직업 | 활동분야 | 주기 | 서지 | |
---|---|---|---|---|---|---|---|---|---|
연구/단체명을 입력해주세요. |
|
|
|
|
|
* 주제를 선택하시면 검색 상세로 이동합니다.
표제지
國文抄錄
목차
Symbols 19
1. 서 언 22
1.1 연구 배경 및 목적 22
1.2 연구 범위 및 방법 24
2. 내진성능에 관한 연구동향 26
2.1 성능에 기초한 내진공학 27
2.1.1 차세대 내진설계의 정의 27
2.1.2 차세대 내진설계의 내용 27
2.2 국내·외의 내진성능평가 29
2.2.1 미국의 내진성능평가 29
2.2.2 일본의 내진성능평가 31
2.2.3 한국의 내진성능평가 35
2.3 건축물의 내진성능 36
2.3.1 건축물의 성능수준 37
2.3.2 내진성능평가 39
3. 필로티에 따른 내진영향 65
3.1 건물의 형상에 따른 지진응답 65
3.2 필로티에 따른 연성요구도의 변화 67
3.3 필로티에 따른 내진성능 69
3.3.1 층간변위를 통한 연약층 검토 70
3.3.2 성능점 및 변형한계 76
3.4 연성요구도 81
3.4.1 설계연성수준에 관한 구조적 분류 82
3.4.2 연성요구도의 평가 83
4. 내진성능의 평가 93
4.1 건물개요 93
4.1.1 구조개요 93
4.1.2 콘크리트강도 및 벽체두께 97
4.1.3 적용하중 97
4.1.4 해석방법 100
4.2 평가방법 및 기준 101
4.2.1 1차 평가방법 및 기준 101
4.2.2 2차 평가방법 및 기준 103
4.2.3 정밀 내진성능 평가방법 및 기준 108
4.3 1차 내진성능평가 111
4.3.1 항목별평가 111
4.3.2 층 가중치 및 항목별 가중치 113
4.3.3 평가 결과 114
4.4 2차 내진성능평가 116
4.4.1 밑면전단력의 산정 116
4.4.2 탄성해석법에 의한 밑면전단력 116
4.4.3 2차 내진성능평가 118
4.4.4 층 가중치 및 항목별 가중치 119
4.4.5 평가결과 120
4.5 정밀 내진성능평가 122
4.5.1 능력곡선과 요구곡선 123
4.5.2 성능점 131
5. 내진성능평가의 고찰 133
5.1 1차내진성능평가 133
5.1.1 강도 133
5.1.2 강성 133
5.1.3 형상 136
5.1.4 상세 및 기타, 열화 137
5.2 2차내진성능평가 140
5.3 열화 146
5.4 정밀내진성능평가 147
5.4.1 설계거동의 한계 검토 147
5.4.2 부재의 적합성 검토 153
5.5 내진성능지수 163
6. 결 언 169
참고문헌 172
부 록 177
ABSTRACT 191
감사의 글 195
Fig. 2.1 Basic concept of performance-based seismic design 28
Fig. 2.2 Codes on performance-based seismic design in America 30
Fig. 2.3 Codes on performance-based seismic design in Japan 32
Fig. 2.4 Seismic assessment procedures 33
Fig. 2.5 Seismic performance evaluation procedures for buildings 36
Fig. 2.6 Building performance levels 38
Fig. 2.7 Performance objectives with buildings performance levels 39
Fig. 2.8 1st-Seismic performance evaluation procedures 40
Fig. 2.9 Vertical irregularities for geometry 45
Fig. 2.10 Horizontal irregularities for geometry 46
Fig. 2.11 Shear reinforcement of side column 47
Fig. 2.12 Shear reinforcement of column 48
Fig. 2.13 Shear reinforcement of beam 48
Fig. 2.14 Opening retrofit of RC shear wall structure 49
Fig. 2.15 2nd-Seismic performance evaluation procedures 51
Fig. 2.16 Typical pushover curve 54
Fig. 2.17 Force-displacement curve of nonlinear static analysis 56
Fig. 2.18 Capacity spectrum conversion 56
Fig. 2.19 Demand response spectrum to ADRS conversion 57
Fig. 2.20 Bi-linear representation 58
Fig. 2.21 Derivation of damping for energy dissipation 59
Fig. 2.22 Derivation of energy dissipated by damping 60
Fig. 2.23 Damping modification factor( k ) for structural behavior type A, B, C 62
Fig. 2.24 Inelastic demand spectrum 63
Fig. 2.25 Inelastic demand spectrum and performance point 63
Fig. 2.26 Seismic evaluation of structure with performance levels 64
Fig. 3.1 Variation of story stiffness with height 66
Fig. 3.2 Interaction frames and wall 68
Fig. 3.3 Piloti pattern of reinforced concrete shear wall buildings 70
Fig. 3.4 Comparison of story drift ratio of buildings according to piltoi types 73
Fig. 3.5 Comparison of story drift ratio of buildings according to piloti types-continued 74
Fig. 3.5 Comparison of story drift ratio of buildings
according to story-continued 75
Fig. 3.6 Inelastic demand spectrum and performance point according to piloti types-10story 77
Fig. 3.7 Inelastic demand spectrum and performance point according to piloti types-15story 77
Fig. 3.8 Inelastic demand spectrum and performance point according to piloti types-20story 78
Fig. 3.9 Inelastic demand spectrum and performance point according to piloti types-25story 78
Fig. 3.10 Inelastic demand spectrum and performance point according to piloti types-30story 79
Fig. 3.11 Inelastic demand spectrum and performance point according to piloti types-35story 79
Fig. 3.12 Sway mechanism in frames of ductility 81
Fig. 3.13 Relationship between strength and ductility(Priestly, 1992) 83
Fig. 3.14 Moment, curvatures, and deflection relationships for a prismatic reinforced concrete 84
Fig. 3.15 Moment -curvature relationships 85
Fig. 3.16 System ductility demand according to piloti types 88
Fig. 3.17 Story ductility demand according to piloti types at first story 88
Fig. 3.18 Column drift ratio according to piloti types at first story 89
Fig. 3.19 Relationship between ductility and force reduction factor 91
Fig. 3.20 Inelastic force-displacement relationship 92
Fig. 4.1 1Floor plan 94
Fig. 4.2 Transfer floor plan 94
Fig. 4.3 Typical floor plan 94
Fig. 4.4 Elevation 95
Fig. 4.5 Section 96
Fig. 4.6 Flow chart for pushover analysis 100
Fig. 4.7 Design spectrum for elastic analysis(KS 2000 Code) 117
Fig. 4.8 Inelastic demand spectrum and performance point - 10 story (X-DIR : LS Level) 125
Fig. 4.9 Inelastic demand spectrum and performance point - 10 story (Y-DIR : LS Level) 125
Fig. 4.10 Inelastic demand spectrum and performance point - 15 story (X-DIR : LS Level) 126
Fig. 4.11 Inelastic demand spectrum and performance point - 15 story (Y-DIR : LS Level) 126
Fig. 4.12 Inelastic demand spectrum and performance point - 20 story (X-DIR : LS Level) 127
Fig. 4.13 Inelastic demand spectrum and performance point - 20 story (Y-DIR : LS Level) 127
Fig. 4.14 Inelastic demand spectrum and performance point - 25 story (X-DIR : LS Level) 128
Fig. 4.15 Inelastic demand spectrum and performance point - 25 story (Y-DIR : LS Level) 128
Fig. 4.16 Inelastic demand spectrum and performance point - 30 story (X-DIR : LS Level) 129
Fig. 4.17 Inelastic demand spectrum and performance point - 30 story (Y-DIR : LS Level) 129
Fig. 4.18 Inelastic demand spectrum and performance point - 35 story (X-DIR : LS Level) 130
Fig. 4.19 Inelastic demand spectrum and performance point - 35 story (Y-DIR : LS Level) 130
Fig. 5.1 Static displacement of building without piloti according to buildings story 134
Fig. 5.2 Static displacement of building with piloti
according to buildings story 134
Fig. 5.4 Comparison of performance indices of buildings with piloti 118
Fig. 5.3 Comparison of static X-DIR displacement of buildings with or without piloti-continued 136
Fig. 5.4 Comparison of performance indices of buildings with piloti 139
Fig. 5.5 Story drift ratio of buildings with piloti 142
Fig. 5.6 Comparison of X-DIR story drift ratio of buildings with piloti-continued 142
Fig. 5.6 Comparison of X-DIR story drift ratio of buildings with piloti-continued 143
Fig. 5.7 Comparison of 2nd performance indices tendency of buildings with iloti 144
Fig. 5.8 Performance indices tendency of 1st and 2nd seismic evaluation of buildings without piloti 144
Fig. 5.9 Performance indices tendency of 1st and 2nd seismic evaluation of buildings with piloti 145
Fig. 5.10 Inelastic demand spectrums and performance point of buildings without piloti according to stories (X-DIR) 150
Fig. 5.11 Inelastic demand spectrums and performance point of buildings without piloti according to stories (Y-DIR) 150
Fig. 5.12 Inelastic demand spectrums and performance point of buildings with piloti according to stories (X-DIR) 151
Fig. 5.13 Inelastic demand spectrums and performance point of buildings with piloti according to stories (Y-DIR) 151
Fig. 5.14 Interstory drift of buildings without piloti(X-DIR) 152
Fig. 5.15 Interstory drift of buildings with piloti(X-DIR) 152
Fig. 5.16 Typical load-deformation acceptance criteria 153
Fig. 5.17 Plastic hinge rotation 154
Fig. 5.18 Interstory drift versus tangential interstory drift 154
Fig. 5.19 Numbering for shear wall element 155
Fig. 5.20 Plastic hinges of 20 story building 156
Fig. 5.21 Plastic hinges of 25 story building 157
Fig. 5.22 Plastic hinges of 30 story building 158
Fig. 5.23 Plastic hinges of 35 story building 159
Fig. 5.24 Flow chart for the RSP identification procedure 163
Fig. 5.25 Performance indices of shear wall buildings by 1st evaluation 164
Fig. 5.26 Correlated performance index between analysis results and egression 168
*표시는 필수 입력사항입니다.
전화번호 |
---|
기사명 | 저자명 | 페이지 | 원문 | 기사목차 |
---|
번호 | 발행일자 | 권호명 | 제본정보 | 자료실 | 원문 | 신청 페이지 |
---|
도서위치안내: / 서가번호:
우편복사 목록담기를 완료하였습니다.
*표시는 필수 입력사항입니다.
저장 되었습니다.