본문 바로가기 주메뉴 바로가기
국회도서관 홈으로 정보검색 소장정보 검색

목차보기

표제지

목차

제 1 장 서론 10

1.1 연구배경 및 목적 10

1.2 연구동향 11

1.3 연구방법 및 범위 14

제 2 장 이론적 배경 15

2.1 점토의 물리화학적 특성 15

2.1.1 점토의 구조 15

2.1.2 점토의 표면기능그룹 17

2.1.3 점토의 표면 전하 20

2.1.4 점토의 표면 착화 21

2.2 Electrokinetic 정화이론 22

2.2.1 Electrokinetic 현상 22

2.2.2 물과 오염물질의 지반이동 25

2.2.3 EK 정화메커니즘과 pH와의 상관성 26

(1) 전기분해와 pH변화 26

(2) 흡착 및 탈착 28

(3) 용해와 침전 30

2.3 점토의 완충능 32

2.3.1 서론 32

2.3.2 표면기능그룹 33

2.3.3 Protonation-Deprotonation반응 34

2.3.4 몰평형 방정식 36

2.3.5 pH변화 모델링 37

제 3 장 실험 39

3.1 산-염기 적정실험 39

3.1.1 목적 및 범위 39

3.1.2 실험종류 및 조건 39

3.1.3 시료 및 시약 40

(1) 흙시료 40

(2) 시약 42

3.1.4 실험방법 42

3.2 Electrokinetic 정화실험 43

3.2.1 목적 및 범위 43

3.2.2 실험종류 및 조건 43

3.2.3 흙 시료 44

3.2.4 실험장치 44

(1) Electrokineitc 정화 실험기기 체계 및 구성 44

(2) Electrokinetic 정화 실험셀 45

3.2.5 실험방법 46

(1) EK정화 실험과정 46

제 4 장 실험결과 및 분석 48

4.1 산-염기적정실험 48

4.2 Electrokinetic 정화실험 52

4.2.1 하동산 Kaolinite(EK-KH test) 52

(1) 전극수조의 pH의 변화 52

(2) 시료내 최종 pH 53

4.2.2 뉴질랜드산 Kaolinite(EK-KN test) 54

(1) 전극수조의 pH의 변화 54

(2) 시료내 최종 pH 55

4.2.3 플로리다산 Kaolinite(EK-KF test) 56

(1) 전극수조의 pH의 변화 56

(2) 시료내 최종 pH 57

4.2.4 캐나다산 Illite(EK-IC test) 58

(1) 전극수조의 pH의 변화 58

(2) 시료내 최종 pH 59

4.3 결과 분석 60

4.3.1 적정실험 60

4.3.2 EK실험 63

제 5 장 수치해석을 위한 프로그램 개발 65

5.1 수치해석을 위한 사례 고찰 65

5.2 완충능 모델링 68

5.3 pH분포 모델링 72

5.3.1 입력상수 결정을 위한 민감도 분석 72

(1) 시료 및 EK 특성 parameter 분석 72

(2) 전극에서의 pH 발현 74

(3) 기본 입력상수의 결정 75

5.4 프로그램의 검증 76

5.4.1 시료내 최종 pH 76

5.4.2 프로그램 시뮬레이션 79

(1) 완충능을 고려한 시간에 따른 pH변화 79

(2) 완충능이 다른 이질성분포토의 pH변화 81

제 6 장 요약 및 결론 83

참고문헌 85

Abstract 90

표목차

Table 2.1 Practical Range of Flow Parameters for Saturated Fine-grained Soils(Mitchell, 1993) 15

Table 2.2 Acid dissociation constants and surface reaction constants of surface functional groups 19

Table 2.3 Classfication of electrokinetic phenomena 25

Table 2.4 Adsorption selectivity of heavy metal in different soils(Yong, 1992) 29

Table 3.1 Test conditions for each acid-base titration test 40

Table 3.2 Soil properties used in this test 41

Table 3.3 Chemical compositions of clays (%) 42

Table 3.4 Test condition for EK test 44

Table 5.1 Model input values of soils 69

Table 5.2 Conditions of parameter for sensitivity analysis 73

Table 5.3 Value of modeled electrokinetic system from experimental data 76

그림목차

Fig. 1.1 Process of this study 14

Fig. 2.1 Idealized structural diagram of kaolinite(Sposito,1989) 16

Fig. 2.2 Schematic of inner and outer-sphere complexes between metal cations and the siloxane ditrigonal cavities of 2:1 clay minerals(from Sposito, 1984) 17

Fig. 2.3 The concept of electroosmosis 23

Fig. 2.4 The concept of electrophoresis 23

Fig. 2.5 The concept of streaming potential 24

Fig. 2.6 The concept of sedimentation potential 24

Fig. 2.7 The concept of ionic migration 24

Fig. 2.8 Transport of species across the soil under electrical field 26

Fig. 2.9 pH-dependent Sorption and precipitation characteristics of lead in Georgia and Milwhite kaolinite(Yeung, 1996) 29

Fig. 2.10 Solubility of a metal hydroxide compound in relation to pH (Yong, 1992) 31

Fig. 2.11 Adsorption of lead partitioning of lead as a function of pH(Galvez, 1989) 31

Fig. 2.12 Possible structural arrangement of lead precipitation in soil(Yong, 1992) 32

Fig. 2.13 Concept of pH Change of Soil-Contaminant-Porewater System 33

Fig. 2.14 Ion Adsorption on Clay Surface(Kim, 2000) 34

Fig. 3.1 Schematic diagram of the electrokinetic remediation test setup 45

Fig. 3.2 Schematic diagram of the electrokinetic remediation cell 46

Fig. 4.1 Titration curve of Ha-dong kaolinite 48

Fig. 4.2 Titration curve of Newzieland kaolinite 49

Fig. 4.3 Titration curve of Florida kaolinite 50

Fig. 4.4 Titration curve of Canadian illite 51

Fig. 4.5 The anolyte and catholyte pH during EK-KH test 52

Fig. 4.6 pH distribution in soil for EK-KH test 53

Fig. 4.7 The anolyte and catholyte pH during EK-KN test 54

Fig. 4.8 pH distribution in soil for EK-KN test 55

Fig. 4.9 The anolyte and catholyte pH during EK-KF test 56

Fig. 4.10 pH distribution in soil for EK-KF test 57

Fig. 4.11 The anolyte and catholyte pH during EK-IC test 58

Fig. 4.12 pH distribution in soil for EK-IC test 59

Fig. 4.13 Acid/Base titration curves of clays and natural soil 60

Fig. 4.14 Buffer capacity curves of clays and natural soil 61

Fig. 4.15 Buffer capacity curves of clays and natural soil as a function of pH 62

Fig. 4.16 The anolyte and catholyte pH during EK test 63

Fig. 4.17 pH distribution in soils for EK test 64

Fig. 5.1 Relation of Surface charge densityσ and pK for K -H 70

Fig. 5.2 Relation of Surface charge densityσ and pK for K -N 70

Fig. 5.3 Relation of Surface charge densityσ and pK for K -F 71

Fig. 5.4 Relation of Surface charge densityσ and pK for I -C 71

Fig. 5.5 Comparison of numerical and experimental titration curves for soils 72

Fig. 5.6 Sensitivity analysis as to the increase of parameter(120%) affecting soil pH 73

Fig. 5.7 Sensitivity analysis as to the decrease of parameter(80%) affecting soil pH 74

Fig. 5.8 Predictions of electrode reservoir pH by computation ; Comparisons to laboratory data and significance of electrolysis efficiency 75

Fig. 5.9 Comparison of numerical and experimental profiles of pH in EK-KH test 77

Fig. 5.10 Comparison of numerical and experimental profiles of pH in EK-KN test 77

Fig. 5.11 Comparison of numerical and experimental profiles of pH in EK-KF test 78

Fig. 5.12 Comparison of numerical and experimental profiles of pH in EK-IC test 78

Fig. 5.13 Predicted pH variation with time in EK-KH test 79

Fig. 5.14 Predicted pH variation with time in EK-KN test 80

Fig. 5.15 Predicted pH variation with time in EK-KF test 80

Fig. 5.16 Predicted pH variation with time in EK-IC test 81

Fig. 5.17 Predicted pH variation with time in heterogeneous soil 81